露天矿生产调度的遗传算法研究

Q4 Earth and Planetary Sciences International Journal of Mining and Geo-Engineering Pub Date : 2017-06-01 DOI:10.22059/IJMGE.2017.62152
A. Alipour, A. Khodaiari, A. Jafari, R. Tavakkoli-Moghaddam
{"title":"露天矿生产调度的遗传算法研究","authors":"A. Alipour, A. Khodaiari, A. Jafari, R. Tavakkoli-Moghaddam","doi":"10.22059/IJMGE.2017.62152","DOIUrl":null,"url":null,"abstract":"In an Open-Pit Production Scheduling (OPPS) problem, the goal is to determine the mining sequence of an orebody as a block model. In this article, linear programing formulation is used to aim this goal. OPPS problem is known as an NP-hard problem, so an exact mathematical model cannot be applied to solve in the real state. Genetic Algorithm (GA) is a well-known member of evolutionary algorithms that widely are utilized to solve NP-hard problems. Herein, GA is implemented in a hypothetical Two-Dimensional (2D) copper orebody model. The orebody is featured as two-dimensional (2D) array of blocks. Likewise, counterpart 2D GA array was used to represent the OPPS problem’s solution space. Thereupon, the fitness function is defined according to the OPPS problem’s objective function to assess the solution domain. Also, new normalization method was used for the handling of block sequencing constraint. A numerical study is performed to compare the solutions of the exact and GA-based methods. It is shown that the gap between GA and the optimal solution by the exact method is less than % 5; hereupon GA is found to be efficiently in solving OPPS problem.","PeriodicalId":36564,"journal":{"name":"International Journal of Mining and Geo-Engineering","volume":"9 1","pages":"47-52"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A genetic algorithm approach for open-pit mine production scheduling\",\"authors\":\"A. Alipour, A. Khodaiari, A. Jafari, R. Tavakkoli-Moghaddam\",\"doi\":\"10.22059/IJMGE.2017.62152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In an Open-Pit Production Scheduling (OPPS) problem, the goal is to determine the mining sequence of an orebody as a block model. In this article, linear programing formulation is used to aim this goal. OPPS problem is known as an NP-hard problem, so an exact mathematical model cannot be applied to solve in the real state. Genetic Algorithm (GA) is a well-known member of evolutionary algorithms that widely are utilized to solve NP-hard problems. Herein, GA is implemented in a hypothetical Two-Dimensional (2D) copper orebody model. The orebody is featured as two-dimensional (2D) array of blocks. Likewise, counterpart 2D GA array was used to represent the OPPS problem’s solution space. Thereupon, the fitness function is defined according to the OPPS problem’s objective function to assess the solution domain. Also, new normalization method was used for the handling of block sequencing constraint. A numerical study is performed to compare the solutions of the exact and GA-based methods. It is shown that the gap between GA and the optimal solution by the exact method is less than % 5; hereupon GA is found to be efficiently in solving OPPS problem.\",\"PeriodicalId\":36564,\"journal\":{\"name\":\"International Journal of Mining and Geo-Engineering\",\"volume\":\"9 1\",\"pages\":\"47-52\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mining and Geo-Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22059/IJMGE.2017.62152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mining and Geo-Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22059/IJMGE.2017.62152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 7

摘要

露天矿生产调度(OPPS)问题的目标是确定一个矿体的开采顺序作为一个块模型。本文采用线性规划公式来实现这一目标。OPPS问题被称为np困难问题,因此在实际状态下无法应用精确的数学模型来求解。遗传算法(GA)是进化算法中一个著名的成员,被广泛用于求解np困难问题。本文在假设的二维铜矿体模型中实现遗传算法。矿体以二维块体阵列为特征。同样地,使用对应的二维遗传阵列来表示OPPS问题的解空间。据此,根据OPPS问题的目标函数定义适应度函数来评估解域。同时,采用新的归一化方法处理块排序约束。数值研究比较了基于遗传算法和精确算法的解。结果表明,遗传算法与精确算法的最优解之间的差距小于% 5;由此发现遗传算法是求解OPPS问题的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A genetic algorithm approach for open-pit mine production scheduling
In an Open-Pit Production Scheduling (OPPS) problem, the goal is to determine the mining sequence of an orebody as a block model. In this article, linear programing formulation is used to aim this goal. OPPS problem is known as an NP-hard problem, so an exact mathematical model cannot be applied to solve in the real state. Genetic Algorithm (GA) is a well-known member of evolutionary algorithms that widely are utilized to solve NP-hard problems. Herein, GA is implemented in a hypothetical Two-Dimensional (2D) copper orebody model. The orebody is featured as two-dimensional (2D) array of blocks. Likewise, counterpart 2D GA array was used to represent the OPPS problem’s solution space. Thereupon, the fitness function is defined according to the OPPS problem’s objective function to assess the solution domain. Also, new normalization method was used for the handling of block sequencing constraint. A numerical study is performed to compare the solutions of the exact and GA-based methods. It is shown that the gap between GA and the optimal solution by the exact method is less than % 5; hereupon GA is found to be efficiently in solving OPPS problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Mining and Geo-Engineering
International Journal of Mining and Geo-Engineering Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
0.80
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Categorical fracture orientation modeling: applied to an Iranian oil field Applying an integrated fuzzy gray MCDM approach: A case study on mineral processing plant site selection DEM Analysis of Backfilled Walls Subjected to Active Translation Mode Preliminary Beneficiation and Washability Studies on Ghouzlou's Low-Ash Coal Sample Combined application of computational fluid dynamics (CFD) and design of experiments (DOE) to hydrodynamic simulation of a coal classifier
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1