{"title":"ALOHA-KV:高性能只读和只写分布式事务","authors":"Hua Fan, W. Golab, C. B. Morrey","doi":"10.1145/3127479.3127487","DOIUrl":null,"url":null,"abstract":"There is a trend in recent database research to pursue coordination avoidance and weaker transaction isolation under a long-standing assumption: concurrent serializable transactions under read-write or write-write conflicts require costly synchronization, and thus may incur a steep price in terms of performance. In particular, distributed transactions, which access multiple data items atomically, are considered inherently costly. They require concurrency control for transaction isolation since both read-write and write-write conflicts are possible, and they rely on distributed commitment protocols to ensure atomicity in the presence of failures. This paper presents serializable read-only and write-only distributed transactions as a counterexample to show that concurrent transactions can be processed in parallel with low-overhead despite conflicts. Inspired by the slotted ALOHA network protocol, we propose a simpler and leaner protocol for serializable read-only write-only transactions, which uses only one round trip to commit a transaction in the absence of failures irrespective of contention. Our design is centered around an epoch-based concurrency control (ECC) mechanism that minimizes synchronization conflicts and uses a small number of additional messages whose cost is amortized across many transactions. We integrate this protocol into ALOHA-KV, a scalable distributed key-value store for read-only write-only transactions, and demonstrate that the system can process close to 15 million read/write operations per second per server when each transaction batches together thousands of such operations.","PeriodicalId":20679,"journal":{"name":"Proceedings of the 2017 Symposium on Cloud Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"ALOHA-KV: high performance read-only and write-only distributed transactions\",\"authors\":\"Hua Fan, W. Golab, C. B. Morrey\",\"doi\":\"10.1145/3127479.3127487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a trend in recent database research to pursue coordination avoidance and weaker transaction isolation under a long-standing assumption: concurrent serializable transactions under read-write or write-write conflicts require costly synchronization, and thus may incur a steep price in terms of performance. In particular, distributed transactions, which access multiple data items atomically, are considered inherently costly. They require concurrency control for transaction isolation since both read-write and write-write conflicts are possible, and they rely on distributed commitment protocols to ensure atomicity in the presence of failures. This paper presents serializable read-only and write-only distributed transactions as a counterexample to show that concurrent transactions can be processed in parallel with low-overhead despite conflicts. Inspired by the slotted ALOHA network protocol, we propose a simpler and leaner protocol for serializable read-only write-only transactions, which uses only one round trip to commit a transaction in the absence of failures irrespective of contention. Our design is centered around an epoch-based concurrency control (ECC) mechanism that minimizes synchronization conflicts and uses a small number of additional messages whose cost is amortized across many transactions. We integrate this protocol into ALOHA-KV, a scalable distributed key-value store for read-only write-only transactions, and demonstrate that the system can process close to 15 million read/write operations per second per server when each transaction batches together thousands of such operations.\",\"PeriodicalId\":20679,\"journal\":{\"name\":\"Proceedings of the 2017 Symposium on Cloud Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 Symposium on Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3127479.3127487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 Symposium on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3127479.3127487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ALOHA-KV: high performance read-only and write-only distributed transactions
There is a trend in recent database research to pursue coordination avoidance and weaker transaction isolation under a long-standing assumption: concurrent serializable transactions under read-write or write-write conflicts require costly synchronization, and thus may incur a steep price in terms of performance. In particular, distributed transactions, which access multiple data items atomically, are considered inherently costly. They require concurrency control for transaction isolation since both read-write and write-write conflicts are possible, and they rely on distributed commitment protocols to ensure atomicity in the presence of failures. This paper presents serializable read-only and write-only distributed transactions as a counterexample to show that concurrent transactions can be processed in parallel with low-overhead despite conflicts. Inspired by the slotted ALOHA network protocol, we propose a simpler and leaner protocol for serializable read-only write-only transactions, which uses only one round trip to commit a transaction in the absence of failures irrespective of contention. Our design is centered around an epoch-based concurrency control (ECC) mechanism that minimizes synchronization conflicts and uses a small number of additional messages whose cost is amortized across many transactions. We integrate this protocol into ALOHA-KV, a scalable distributed key-value store for read-only write-only transactions, and demonstrate that the system can process close to 15 million read/write operations per second per server when each transaction batches together thousands of such operations.