Yu Nie, Na Huang, Junjie Peng, Guanghua Song, Yilai Zhang, Yongkang Peng, Chenglin Ni
{"title":"基于自然语言处理的陶瓷领域知识图谱构建与应用研究","authors":"Yu Nie, Na Huang, Junjie Peng, Guanghua Song, Yilai Zhang, Yongkang Peng, Chenglin Ni","doi":"10.4018/ijswis.327352","DOIUrl":null,"url":null,"abstract":"There are problems of knowledge deficiency and effective unified expression of knowledge in the process of relevant knowledge data acquired by workers in the ceramic domain. In this study, the authors designed relevant experiments to construct ceramic field knowledge graphs to solve these problems. In the experiments of named entity recognition and relationship recognition, the authors compared the performance of several models in OwnThink and ceramics field datasets. The experimental results showed that the BiLSTM-CRF model is the best for named entity recognition and the TextCNN model is the best for relationship recognition in ceramics field datasets. Therefore, the first used the BiLSTM-CRF model to complete the naming entity recognition and then combined with the TextCNN model to complete the relationship recognition to construct the ceramic field knowledge graph. Then, they applied the constructed graph to the ceramic knowledge Q&A service to provide accurate data retrieval service for ceramic domain workers.","PeriodicalId":54934,"journal":{"name":"International Journal on Semantic Web and Information Systems","volume":"19 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on the Construction and Application of Knowledge Graph in the Ceramic Field Based on Natural Language Processing\",\"authors\":\"Yu Nie, Na Huang, Junjie Peng, Guanghua Song, Yilai Zhang, Yongkang Peng, Chenglin Ni\",\"doi\":\"10.4018/ijswis.327352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are problems of knowledge deficiency and effective unified expression of knowledge in the process of relevant knowledge data acquired by workers in the ceramic domain. In this study, the authors designed relevant experiments to construct ceramic field knowledge graphs to solve these problems. In the experiments of named entity recognition and relationship recognition, the authors compared the performance of several models in OwnThink and ceramics field datasets. The experimental results showed that the BiLSTM-CRF model is the best for named entity recognition and the TextCNN model is the best for relationship recognition in ceramics field datasets. Therefore, the first used the BiLSTM-CRF model to complete the naming entity recognition and then combined with the TextCNN model to complete the relationship recognition to construct the ceramic field knowledge graph. Then, they applied the constructed graph to the ceramic knowledge Q&A service to provide accurate data retrieval service for ceramic domain workers.\",\"PeriodicalId\":54934,\"journal\":{\"name\":\"International Journal on Semantic Web and Information Systems\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Semantic Web and Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/ijswis.327352\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Semantic Web and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijswis.327352","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Research on the Construction and Application of Knowledge Graph in the Ceramic Field Based on Natural Language Processing
There are problems of knowledge deficiency and effective unified expression of knowledge in the process of relevant knowledge data acquired by workers in the ceramic domain. In this study, the authors designed relevant experiments to construct ceramic field knowledge graphs to solve these problems. In the experiments of named entity recognition and relationship recognition, the authors compared the performance of several models in OwnThink and ceramics field datasets. The experimental results showed that the BiLSTM-CRF model is the best for named entity recognition and the TextCNN model is the best for relationship recognition in ceramics field datasets. Therefore, the first used the BiLSTM-CRF model to complete the naming entity recognition and then combined with the TextCNN model to complete the relationship recognition to construct the ceramic field knowledge graph. Then, they applied the constructed graph to the ceramic knowledge Q&A service to provide accurate data retrieval service for ceramic domain workers.
期刊介绍:
The International Journal on Semantic Web and Information Systems (IJSWIS) promotes a knowledge transfer channel where academics, practitioners, and researchers can discuss, analyze, criticize, synthesize, communicate, elaborate, and simplify the more-than-promising technology of the semantic Web in the context of information systems. The journal aims to establish value-adding knowledge transfer and personal development channels in three distinctive areas: academia, industry, and government.