静态载荷作用下上C3颈椎终板及松质核的有限元分析

I. Mabe, T. Goswami
{"title":"静态载荷作用下上C3颈椎终板及松质核的有限元分析","authors":"I. Mabe, T. Goswami","doi":"10.11159/jbeb.2016.006","DOIUrl":null,"url":null,"abstract":"- Subsidence is a type of failure associated with implanted cervical cages or artificial intervertebral discs. It is defined as a loss of postoperative disc height. Actuarial rates show a risk of subsidence at 16 weeks at 70.7 percent. This study examines the changes in the vertebral endplate morphology and the resulting effect on the stresses developed in the endplate and in the vertebral core. A three-dimensional linear elastic model was created from computed tomographic (CT) scans and material properties were assigned according to various studies. Particular care was taken in the superior endplate that was modeled according to experimental measurements. Von Mises stress values were examined in the vertebral endplates and the cancellous core. The stresses were the result of a static load analysis. The stresses analyzed comparing a model with an idealized half-millimeter endplate to anthropometrically based models see if the half-millimeter thick endplate is an adequate approximation. The stresses in the cancellous core were measured at various levels to see how stress propagated through the core with the adjustment of the endplate. The core stresses were investigated to identify regions of potential failure. Ideally this information would be used to improve intervertebral device design.","PeriodicalId":92699,"journal":{"name":"Open access journal of biomedical engineering and biosciences","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Finite Element Analysis of Superior C3 Cervical Vertebra Endplate and Cancellous Core under Static Loads\",\"authors\":\"I. Mabe, T. Goswami\",\"doi\":\"10.11159/jbeb.2016.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"- Subsidence is a type of failure associated with implanted cervical cages or artificial intervertebral discs. It is defined as a loss of postoperative disc height. Actuarial rates show a risk of subsidence at 16 weeks at 70.7 percent. This study examines the changes in the vertebral endplate morphology and the resulting effect on the stresses developed in the endplate and in the vertebral core. A three-dimensional linear elastic model was created from computed tomographic (CT) scans and material properties were assigned according to various studies. Particular care was taken in the superior endplate that was modeled according to experimental measurements. Von Mises stress values were examined in the vertebral endplates and the cancellous core. The stresses were the result of a static load analysis. The stresses analyzed comparing a model with an idealized half-millimeter endplate to anthropometrically based models see if the half-millimeter thick endplate is an adequate approximation. The stresses in the cancellous core were measured at various levels to see how stress propagated through the core with the adjustment of the endplate. The core stresses were investigated to identify regions of potential failure. Ideally this information would be used to improve intervertebral device design.\",\"PeriodicalId\":92699,\"journal\":{\"name\":\"Open access journal of biomedical engineering and biosciences\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open access journal of biomedical engineering and biosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11159/jbeb.2016.006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open access journal of biomedical engineering and biosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11159/jbeb.2016.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

-下沉是一种与植入颈椎笼或人工椎间盘有关的失败。它被定义为术后椎间盘高度的损失。精算率显示,第16周的下沉风险为70.7%。本研究探讨了椎体终板形态的变化以及由此产生的对终板和椎体核心应力的影响。通过计算机断层扫描(CT)建立了三维线弹性模型,并根据各种研究分配了材料的特性。根据实验测量结果对上端板进行了建模。在椎体终板和松质核心处检测Von Mises应力值。应力是静载荷分析的结果。将具有理想半毫米终板的模型与基于人体测量学的模型进行比较,分析应力,看看半毫米厚终板是否足够近似。在不同的水平上测量了松质核心的应力,以观察随着终板的调整,应力如何通过核心传播。研究了岩心应力,以确定潜在的破坏区域。理想情况下,这些信息将用于改进椎间装置的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Finite Element Analysis of Superior C3 Cervical Vertebra Endplate and Cancellous Core under Static Loads
- Subsidence is a type of failure associated with implanted cervical cages or artificial intervertebral discs. It is defined as a loss of postoperative disc height. Actuarial rates show a risk of subsidence at 16 weeks at 70.7 percent. This study examines the changes in the vertebral endplate morphology and the resulting effect on the stresses developed in the endplate and in the vertebral core. A three-dimensional linear elastic model was created from computed tomographic (CT) scans and material properties were assigned according to various studies. Particular care was taken in the superior endplate that was modeled according to experimental measurements. Von Mises stress values were examined in the vertebral endplates and the cancellous core. The stresses were the result of a static load analysis. The stresses analyzed comparing a model with an idealized half-millimeter endplate to anthropometrically based models see if the half-millimeter thick endplate is an adequate approximation. The stresses in the cancellous core were measured at various levels to see how stress propagated through the core with the adjustment of the endplate. The core stresses were investigated to identify regions of potential failure. Ideally this information would be used to improve intervertebral device design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Simulation Study of Urine Transport Through the Ureter Reliable Multimodal Heartbeat Classification using Deep Neural Networks Affordability Assessment on Generic and Brand-name Anti-depressants Methods, Validation and Clinical Implementation of a Simulation Method of Cerebral Aneurysms Realistic 3D CT-FEM for Target-based Multiple Organ Inclusive Studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1