{"title":"基于移动场景和用户轨迹感知的众包服务建议","authors":"Jie Su, Jun Li","doi":"10.4018/ijwsr.299020","DOIUrl":null,"url":null,"abstract":"With the rapid development of the mobile internet and the rapid popularization of smart terminal devices, types and content of services are changing with each passing day, these bring serious mobile information overload problems for mobile users. How to provide better service recommendations for users is an urgent problem to be solved. A crowdsourcing service recommendation strategy for mobile scenarios and user trajectory awareness is proposed. First, the location coordinates in the historical log are clustered into regions by clustering algorithms, and then the user's trajectory patterns are mined in different mobile scenarios to extract mobile rules. Furthermore, the mobile rules are extracted and the scenario to which each rule belongs is judged. When performing crowdsourcing service recommendation, the location trajectory and mobile scenario information are perceived in real time, they are used to predict the location area where the user will soon arrive, thereby the crowdsourcing service in the area is pushed to the user.","PeriodicalId":54936,"journal":{"name":"International Journal of Web Services Research","volume":"34 1","pages":"1-18"},"PeriodicalIF":0.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Recommendations for Crowdsourcing Services Based on Mobile Scenarios and User Trajectory Awareness\",\"authors\":\"Jie Su, Jun Li\",\"doi\":\"10.4018/ijwsr.299020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of the mobile internet and the rapid popularization of smart terminal devices, types and content of services are changing with each passing day, these bring serious mobile information overload problems for mobile users. How to provide better service recommendations for users is an urgent problem to be solved. A crowdsourcing service recommendation strategy for mobile scenarios and user trajectory awareness is proposed. First, the location coordinates in the historical log are clustered into regions by clustering algorithms, and then the user's trajectory patterns are mined in different mobile scenarios to extract mobile rules. Furthermore, the mobile rules are extracted and the scenario to which each rule belongs is judged. When performing crowdsourcing service recommendation, the location trajectory and mobile scenario information are perceived in real time, they are used to predict the location area where the user will soon arrive, thereby the crowdsourcing service in the area is pushed to the user.\",\"PeriodicalId\":54936,\"journal\":{\"name\":\"International Journal of Web Services Research\",\"volume\":\"34 1\",\"pages\":\"1-18\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Web Services Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/ijwsr.299020\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Web Services Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijwsr.299020","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Recommendations for Crowdsourcing Services Based on Mobile Scenarios and User Trajectory Awareness
With the rapid development of the mobile internet and the rapid popularization of smart terminal devices, types and content of services are changing with each passing day, these bring serious mobile information overload problems for mobile users. How to provide better service recommendations for users is an urgent problem to be solved. A crowdsourcing service recommendation strategy for mobile scenarios and user trajectory awareness is proposed. First, the location coordinates in the historical log are clustered into regions by clustering algorithms, and then the user's trajectory patterns are mined in different mobile scenarios to extract mobile rules. Furthermore, the mobile rules are extracted and the scenario to which each rule belongs is judged. When performing crowdsourcing service recommendation, the location trajectory and mobile scenario information are perceived in real time, they are used to predict the location area where the user will soon arrive, thereby the crowdsourcing service in the area is pushed to the user.
期刊介绍:
The International Journal of Web Services Research (IJWSR) is the first refereed, international publication featuring the latest research findings and industry solutions involving all aspects of Web services technology. This journal covers advancements, standards, and practices of Web services, as well as identifies emerging research topics and defines the future of Web services on grid computing, multimedia, and communication. IJWSR provides an open, formal publication for high quality articles developed by theoreticians, educators, developers, researchers, and practitioners for those desiring to stay abreast of challenges in Web services technology.