情境化隐私决策以更好地预测(和保护)

Primal Wijesekera, Joel Reardon, Irwin Reyes, Lynn Tsai, Jung-Wei Chen, Nathaniel Good, D. Wagner, K. Beznosov, Serge Egelman
{"title":"情境化隐私决策以更好地预测(和保护)","authors":"Primal Wijesekera, Joel Reardon, Irwin Reyes, Lynn Tsai, Jung-Wei Chen, Nathaniel Good, D. Wagner, K. Beznosov, Serge Egelman","doi":"10.1145/3173574.3173842","DOIUrl":null,"url":null,"abstract":"Modern mobile operating systems implement an ask-on-first-use policy to regulate applications' access to private user data: the user is prompted to allow or deny access to a sensitive resource the first time an app attempts to use it. Prior research shows that this model may not adequately capture user privacy preferences because subsequent requests may occur under varying contexts. To address this shortcoming, we implemented a novel privacy management system in Android, in which we use contextual signals to build a classifier that predicts user privacy preferences under various scenarios. We performed a 37-person field study to evaluate this new permission model under normal device usage. From our exit interviews and collection of over 5 million data points from participants, we show that this new permission model reduces the error rate by 75% (i.e., fewer privacy violations), while preserving usability. We offer guidelines for how platforms can better support user privacy decision making.","PeriodicalId":20512,"journal":{"name":"Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":"{\"title\":\"Contextualizing Privacy Decisions for Better Prediction (and Protection)\",\"authors\":\"Primal Wijesekera, Joel Reardon, Irwin Reyes, Lynn Tsai, Jung-Wei Chen, Nathaniel Good, D. Wagner, K. Beznosov, Serge Egelman\",\"doi\":\"10.1145/3173574.3173842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern mobile operating systems implement an ask-on-first-use policy to regulate applications' access to private user data: the user is prompted to allow or deny access to a sensitive resource the first time an app attempts to use it. Prior research shows that this model may not adequately capture user privacy preferences because subsequent requests may occur under varying contexts. To address this shortcoming, we implemented a novel privacy management system in Android, in which we use contextual signals to build a classifier that predicts user privacy preferences under various scenarios. We performed a 37-person field study to evaluate this new permission model under normal device usage. From our exit interviews and collection of over 5 million data points from participants, we show that this new permission model reduces the error rate by 75% (i.e., fewer privacy violations), while preserving usability. We offer guidelines for how platforms can better support user privacy decision making.\",\"PeriodicalId\":20512,\"journal\":{\"name\":\"Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"61\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3173574.3173842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3173574.3173842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

摘要

现代移动操作系统实现了首次使用请求策略来规范应用程序对私人用户数据的访问:在应用程序第一次尝试使用敏感资源时,提示用户允许或拒绝访问它。先前的研究表明,该模型可能无法充分捕获用户隐私偏好,因为后续请求可能发生在不同的上下文中。为了解决这个缺点,我们在Android上实现了一个新的隐私管理系统,在这个系统中,我们使用上下文信号来构建一个分类器,预测用户在各种场景下的隐私偏好。我们进行了一项37人的现场研究,以在正常设备使用下评估这种新的权限模型。从我们的离职访谈和从参与者那里收集的超过500万个数据点中,我们发现这种新的权限模型将错误率降低了75%(即更少的隐私侵犯),同时保持了可用性。我们为平台如何更好地支持用户隐私决策提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Contextualizing Privacy Decisions for Better Prediction (and Protection)
Modern mobile operating systems implement an ask-on-first-use policy to regulate applications' access to private user data: the user is prompted to allow or deny access to a sensitive resource the first time an app attempts to use it. Prior research shows that this model may not adequately capture user privacy preferences because subsequent requests may occur under varying contexts. To address this shortcoming, we implemented a novel privacy management system in Android, in which we use contextual signals to build a classifier that predicts user privacy preferences under various scenarios. We performed a 37-person field study to evaluate this new permission model under normal device usage. From our exit interviews and collection of over 5 million data points from participants, we show that this new permission model reduces the error rate by 75% (i.e., fewer privacy violations), while preserving usability. We offer guidelines for how platforms can better support user privacy decision making.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scaling Classroom IT Skill Tutoring: A Case Study from India Convey: Exploring the Use of a Context View for Chatbots Make Yourself at Phone: Reimagining Mobile Interaction Architectures With Emergent Users Forte Conveying the Perception of Kinesthetic Feedback in Virtual Reality using State-of-the-Art Hardware
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1