Primal Wijesekera, Joel Reardon, Irwin Reyes, Lynn Tsai, Jung-Wei Chen, Nathaniel Good, D. Wagner, K. Beznosov, Serge Egelman
{"title":"情境化隐私决策以更好地预测(和保护)","authors":"Primal Wijesekera, Joel Reardon, Irwin Reyes, Lynn Tsai, Jung-Wei Chen, Nathaniel Good, D. Wagner, K. Beznosov, Serge Egelman","doi":"10.1145/3173574.3173842","DOIUrl":null,"url":null,"abstract":"Modern mobile operating systems implement an ask-on-first-use policy to regulate applications' access to private user data: the user is prompted to allow or deny access to a sensitive resource the first time an app attempts to use it. Prior research shows that this model may not adequately capture user privacy preferences because subsequent requests may occur under varying contexts. To address this shortcoming, we implemented a novel privacy management system in Android, in which we use contextual signals to build a classifier that predicts user privacy preferences under various scenarios. We performed a 37-person field study to evaluate this new permission model under normal device usage. From our exit interviews and collection of over 5 million data points from participants, we show that this new permission model reduces the error rate by 75% (i.e., fewer privacy violations), while preserving usability. We offer guidelines for how platforms can better support user privacy decision making.","PeriodicalId":20512,"journal":{"name":"Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":"{\"title\":\"Contextualizing Privacy Decisions for Better Prediction (and Protection)\",\"authors\":\"Primal Wijesekera, Joel Reardon, Irwin Reyes, Lynn Tsai, Jung-Wei Chen, Nathaniel Good, D. Wagner, K. Beznosov, Serge Egelman\",\"doi\":\"10.1145/3173574.3173842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern mobile operating systems implement an ask-on-first-use policy to regulate applications' access to private user data: the user is prompted to allow or deny access to a sensitive resource the first time an app attempts to use it. Prior research shows that this model may not adequately capture user privacy preferences because subsequent requests may occur under varying contexts. To address this shortcoming, we implemented a novel privacy management system in Android, in which we use contextual signals to build a classifier that predicts user privacy preferences under various scenarios. We performed a 37-person field study to evaluate this new permission model under normal device usage. From our exit interviews and collection of over 5 million data points from participants, we show that this new permission model reduces the error rate by 75% (i.e., fewer privacy violations), while preserving usability. We offer guidelines for how platforms can better support user privacy decision making.\",\"PeriodicalId\":20512,\"journal\":{\"name\":\"Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"61\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3173574.3173842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3173574.3173842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Contextualizing Privacy Decisions for Better Prediction (and Protection)
Modern mobile operating systems implement an ask-on-first-use policy to regulate applications' access to private user data: the user is prompted to allow or deny access to a sensitive resource the first time an app attempts to use it. Prior research shows that this model may not adequately capture user privacy preferences because subsequent requests may occur under varying contexts. To address this shortcoming, we implemented a novel privacy management system in Android, in which we use contextual signals to build a classifier that predicts user privacy preferences under various scenarios. We performed a 37-person field study to evaluate this new permission model under normal device usage. From our exit interviews and collection of over 5 million data points from participants, we show that this new permission model reduces the error rate by 75% (i.e., fewer privacy violations), while preserving usability. We offer guidelines for how platforms can better support user privacy decision making.