{"title":"工艺分散的SPRT标志图","authors":"Dadasaheb G. Godase, Shashibhushan B. Mahadik","doi":"10.1515/eqc-2021-0026","DOIUrl":null,"url":null,"abstract":"Abstract A nonparametric sequential probability ratio test control chart to monitor the process dispersion based on the sequential sign statistic is proposed. The statistical performance of this chart is evaluated by comparing it with that of the charts for dispersion based on sign statistic in the existing literature. It is found that the proposed chart outperforms all these charts uniformly in detecting a shift of any size over a wide range. An implementation of the chart is illustrated through an example.","PeriodicalId":37499,"journal":{"name":"Stochastics and Quality Control","volume":"47 1","pages":"101 - 106"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The SPRT Sign Chart for Process Dispersion\",\"authors\":\"Dadasaheb G. Godase, Shashibhushan B. Mahadik\",\"doi\":\"10.1515/eqc-2021-0026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A nonparametric sequential probability ratio test control chart to monitor the process dispersion based on the sequential sign statistic is proposed. The statistical performance of this chart is evaluated by comparing it with that of the charts for dispersion based on sign statistic in the existing literature. It is found that the proposed chart outperforms all these charts uniformly in detecting a shift of any size over a wide range. An implementation of the chart is illustrated through an example.\",\"PeriodicalId\":37499,\"journal\":{\"name\":\"Stochastics and Quality Control\",\"volume\":\"47 1\",\"pages\":\"101 - 106\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastics and Quality Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/eqc-2021-0026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Quality Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/eqc-2021-0026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Abstract A nonparametric sequential probability ratio test control chart to monitor the process dispersion based on the sequential sign statistic is proposed. The statistical performance of this chart is evaluated by comparing it with that of the charts for dispersion based on sign statistic in the existing literature. It is found that the proposed chart outperforms all these charts uniformly in detecting a shift of any size over a wide range. An implementation of the chart is illustrated through an example.