Zhe-heng Zhou, K. Yonezu, A. Imai, T. Tindell, Huan Li, J. Gabo‐Ratio
{"title":"沃溪金-锑-钨矿床硫化物微量元素矿物化学特征","authors":"Zhe-heng Zhou, K. Yonezu, A. Imai, T. Tindell, Huan Li, J. Gabo‐Ratio","doi":"10.1111/rge.12279","DOIUrl":null,"url":null,"abstract":"The Woxi Au‐Sb‐W deposit is one of the largest polymetallic ore deposits in the Xuefengshan Range, southern China, hosted in low‐grade metamorphosed Neoproterozoic volcaniclastic rocks. The orebodies of the deposit are predominantly composed of banded quartz veins, which are strictly controlled by bedding and faults. Petrographic observations and geochemical results are reported on the occurrence of Au and properties of the ore‐forming processes for different stages in the deposit. The veins extend vertically up to 2 km without obvious vertical metal zoning. The ore‐forming process can be subdivided into four mineralization stages: Pre‐ore stage; Early stage (scheelite‐quartz stage); Middle stage (pyrite‐stibnite‐quartz stage); and Late stage (stibnite‐quartz sage). Four types of pyrite (Py0, Py1, Py2, and Py3) were identified in the ores and host‐rock: Py0 occurs as euhedral grains with voids in the core, ranging in size from 50 to 100 μm and formed mainly in the Pre‐ore stage and Early stage; Py1 occurs as subhedral grains. Small grains (around 10 μm) of Py1 form irregularly shaped clusters of variable size ranging from tens to hundreds of μm and mainly formed in the Middle stage; Euhedral‐subhedral fine‐grained Py2 formed in the Late stage; Minor subhedral fine‐grained Py3 was deposited in the Late‐stage. Stibnite is widely distributed in the Middle and Late stage ore veins. No systemic difference was recognized in mineralogical features among stibnite formed in different stages. In addition to native gold, the lattice bound Au+1 widely exists in Py1 and Py2 in the deposit, and widespread Py1 is considered as the main Au‐bearing mineral with the highest Au contents. Most elements (such as Co, Ni, Cu, As, Sb, Ba, and Pb) are considered to occur as solid solution within the crystal lattice and/or invisible nanoparticles in sulfides minerals. The Co/Ni ratio of most pyrite is lower than 1, suggesting that the metals in the ore‐forming fluid are sourced from sedimentary rocks. The coupled behavior between Au and As; Au and Sb suggests that the substitution of As and Sb in pyrite can enhance the incorporation of Au. Variation of trace elements in pyrites of different stages suggests some information on the mineralization processes: Large ion lithophile elements (such as Ba and Pb) are enriched in Py0 indicating that water‐rock reaction occurred in the Early stage; Fine‐grained Py1 with a heterogeneous distribution of elements suggests fast crystallization of pyrite in the Middle stage.","PeriodicalId":21089,"journal":{"name":"Resource Geology","volume":"6 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Trace elements mineral chemistry of sulfides from the Woxi Au‐Sb‐W deposit, southern China\",\"authors\":\"Zhe-heng Zhou, K. Yonezu, A. Imai, T. Tindell, Huan Li, J. Gabo‐Ratio\",\"doi\":\"10.1111/rge.12279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Woxi Au‐Sb‐W deposit is one of the largest polymetallic ore deposits in the Xuefengshan Range, southern China, hosted in low‐grade metamorphosed Neoproterozoic volcaniclastic rocks. The orebodies of the deposit are predominantly composed of banded quartz veins, which are strictly controlled by bedding and faults. Petrographic observations and geochemical results are reported on the occurrence of Au and properties of the ore‐forming processes for different stages in the deposit. The veins extend vertically up to 2 km without obvious vertical metal zoning. The ore‐forming process can be subdivided into four mineralization stages: Pre‐ore stage; Early stage (scheelite‐quartz stage); Middle stage (pyrite‐stibnite‐quartz stage); and Late stage (stibnite‐quartz sage). Four types of pyrite (Py0, Py1, Py2, and Py3) were identified in the ores and host‐rock: Py0 occurs as euhedral grains with voids in the core, ranging in size from 50 to 100 μm and formed mainly in the Pre‐ore stage and Early stage; Py1 occurs as subhedral grains. Small grains (around 10 μm) of Py1 form irregularly shaped clusters of variable size ranging from tens to hundreds of μm and mainly formed in the Middle stage; Euhedral‐subhedral fine‐grained Py2 formed in the Late stage; Minor subhedral fine‐grained Py3 was deposited in the Late‐stage. Stibnite is widely distributed in the Middle and Late stage ore veins. No systemic difference was recognized in mineralogical features among stibnite formed in different stages. In addition to native gold, the lattice bound Au+1 widely exists in Py1 and Py2 in the deposit, and widespread Py1 is considered as the main Au‐bearing mineral with the highest Au contents. Most elements (such as Co, Ni, Cu, As, Sb, Ba, and Pb) are considered to occur as solid solution within the crystal lattice and/or invisible nanoparticles in sulfides minerals. The Co/Ni ratio of most pyrite is lower than 1, suggesting that the metals in the ore‐forming fluid are sourced from sedimentary rocks. The coupled behavior between Au and As; Au and Sb suggests that the substitution of As and Sb in pyrite can enhance the incorporation of Au. Variation of trace elements in pyrites of different stages suggests some information on the mineralization processes: Large ion lithophile elements (such as Ba and Pb) are enriched in Py0 indicating that water‐rock reaction occurred in the Early stage; Fine‐grained Py1 with a heterogeneous distribution of elements suggests fast crystallization of pyrite in the Middle stage.\",\"PeriodicalId\":21089,\"journal\":{\"name\":\"Resource Geology\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resource Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1111/rge.12279\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resource Geology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1111/rge.12279","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOLOGY","Score":null,"Total":0}
Trace elements mineral chemistry of sulfides from the Woxi Au‐Sb‐W deposit, southern China
The Woxi Au‐Sb‐W deposit is one of the largest polymetallic ore deposits in the Xuefengshan Range, southern China, hosted in low‐grade metamorphosed Neoproterozoic volcaniclastic rocks. The orebodies of the deposit are predominantly composed of banded quartz veins, which are strictly controlled by bedding and faults. Petrographic observations and geochemical results are reported on the occurrence of Au and properties of the ore‐forming processes for different stages in the deposit. The veins extend vertically up to 2 km without obvious vertical metal zoning. The ore‐forming process can be subdivided into four mineralization stages: Pre‐ore stage; Early stage (scheelite‐quartz stage); Middle stage (pyrite‐stibnite‐quartz stage); and Late stage (stibnite‐quartz sage). Four types of pyrite (Py0, Py1, Py2, and Py3) were identified in the ores and host‐rock: Py0 occurs as euhedral grains with voids in the core, ranging in size from 50 to 100 μm and formed mainly in the Pre‐ore stage and Early stage; Py1 occurs as subhedral grains. Small grains (around 10 μm) of Py1 form irregularly shaped clusters of variable size ranging from tens to hundreds of μm and mainly formed in the Middle stage; Euhedral‐subhedral fine‐grained Py2 formed in the Late stage; Minor subhedral fine‐grained Py3 was deposited in the Late‐stage. Stibnite is widely distributed in the Middle and Late stage ore veins. No systemic difference was recognized in mineralogical features among stibnite formed in different stages. In addition to native gold, the lattice bound Au+1 widely exists in Py1 and Py2 in the deposit, and widespread Py1 is considered as the main Au‐bearing mineral with the highest Au contents. Most elements (such as Co, Ni, Cu, As, Sb, Ba, and Pb) are considered to occur as solid solution within the crystal lattice and/or invisible nanoparticles in sulfides minerals. The Co/Ni ratio of most pyrite is lower than 1, suggesting that the metals in the ore‐forming fluid are sourced from sedimentary rocks. The coupled behavior between Au and As; Au and Sb suggests that the substitution of As and Sb in pyrite can enhance the incorporation of Au. Variation of trace elements in pyrites of different stages suggests some information on the mineralization processes: Large ion lithophile elements (such as Ba and Pb) are enriched in Py0 indicating that water‐rock reaction occurred in the Early stage; Fine‐grained Py1 with a heterogeneous distribution of elements suggests fast crystallization of pyrite in the Middle stage.
期刊介绍:
Resource Geology is an international journal focusing on economic geology, geochemistry and environmental geology. Its purpose is to contribute to the promotion of earth sciences related to metallic and non-metallic mineral deposits mainly in Asia, Oceania and the Circum-Pacific region, although other parts of the world are also considered.
Launched in 1998 by the Society for Resource Geology, the journal is published quarterly in English, making it more accessible to the international geological community. The journal publishes high quality papers of interest to those engaged in research and exploration of mineral deposits.