半导体多层膜从极紫外到远红外的光学特性模拟

Ravindra Nm
{"title":"半导体多层膜从极紫外到远红外的光学特性模拟","authors":"Ravindra Nm","doi":"10.15406/MSEIJ.2020.04.00139","DOIUrl":null,"url":null,"abstract":"Optical properties of semiconductors play a critical role in various applications including the design and manufacture of optical components, devices & sources, energy conversion and process monitoring & control. While the fundamental understanding of the optical properties of semiconductors has grown over the years, reliable data of the optical constants of semiconductors, particularly in the infrared range of wavelengths, is severely lacking in the literature. In this overview, detailed case studies of the optical properties of Silicon on Insulator (SOI) and Ge photodetectors, based on Forouhi-Bloomer dispersion equation, as function of photon energy (or wavelength) and thickness are presented. The obtained simulation results, based on this relation, are in good accord with the literature values and are consistent with some well-accepted studies. Furthermore, the results reported in this analysis are helpful for the determination and realization of the optical response of materials under conditions of varying photon energy and thickness.","PeriodicalId":18241,"journal":{"name":"Material Science & Engineering International Journal","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Simulation of optical properties of semiconductor multilayers from extreme ultraviolet to far infrared\",\"authors\":\"Ravindra Nm\",\"doi\":\"10.15406/MSEIJ.2020.04.00139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical properties of semiconductors play a critical role in various applications including the design and manufacture of optical components, devices & sources, energy conversion and process monitoring & control. While the fundamental understanding of the optical properties of semiconductors has grown over the years, reliable data of the optical constants of semiconductors, particularly in the infrared range of wavelengths, is severely lacking in the literature. In this overview, detailed case studies of the optical properties of Silicon on Insulator (SOI) and Ge photodetectors, based on Forouhi-Bloomer dispersion equation, as function of photon energy (or wavelength) and thickness are presented. The obtained simulation results, based on this relation, are in good accord with the literature values and are consistent with some well-accepted studies. Furthermore, the results reported in this analysis are helpful for the determination and realization of the optical response of materials under conditions of varying photon energy and thickness.\",\"PeriodicalId\":18241,\"journal\":{\"name\":\"Material Science & Engineering International Journal\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Material Science & Engineering International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15406/MSEIJ.2020.04.00139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Material Science & Engineering International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15406/MSEIJ.2020.04.00139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

半导体的光学特性在各种应用中起着至关重要的作用,包括光学元件、器件和光源的设计和制造、能量转换和过程监控。虽然多年来对半导体光学特性的基本理解已经增长,但半导体光学常数的可靠数据,特别是在红外波长范围内,在文献中严重缺乏。本文基于Forouhi-Bloomer色散方程,详细分析了绝缘体上硅(SOI)和锗光电探测器的光学特性与光子能量(或波长)和厚度的关系。基于这一关系得到的仿真结果与文献值吻合较好,与一些公认的研究结果一致。此外,本文的分析结果有助于确定和实现材料在不同光子能量和厚度条件下的光学响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simulation of optical properties of semiconductor multilayers from extreme ultraviolet to far infrared
Optical properties of semiconductors play a critical role in various applications including the design and manufacture of optical components, devices & sources, energy conversion and process monitoring & control. While the fundamental understanding of the optical properties of semiconductors has grown over the years, reliable data of the optical constants of semiconductors, particularly in the infrared range of wavelengths, is severely lacking in the literature. In this overview, detailed case studies of the optical properties of Silicon on Insulator (SOI) and Ge photodetectors, based on Forouhi-Bloomer dispersion equation, as function of photon energy (or wavelength) and thickness are presented. The obtained simulation results, based on this relation, are in good accord with the literature values and are consistent with some well-accepted studies. Furthermore, the results reported in this analysis are helpful for the determination and realization of the optical response of materials under conditions of varying photon energy and thickness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Properties of particleboard produced from discard sawdust and cassava waste blends Thermal, mechanical and environmental degradation characteristics of polyhydroxybutyrate-co-valerate reinforced with cellulose fibers Editorial: science and engineering, two aspects of materials Editorial: open access journals’ situation and future Long-term global climate prediction; rogue science?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1