R. C. Daudt, Adrien Chan-Hon-Tong, B. L. Saux, Alexandre Boulch
{"title":"学习理解地面真实度较弱和不可靠的对地观测图像","authors":"R. C. Daudt, Adrien Chan-Hon-Tong, B. L. Saux, Alexandre Boulch","doi":"10.1109/IGARSS.2019.8898563","DOIUrl":null,"url":null,"abstract":"In this paper we discuss the issues of using inexact and inaccurate ground truth in the context of supervised learning. To leverage large amounts of Earth observation data for training algorithms, one often has to use ground truth which was not been carefully assessed. We address both the problems of training and evaluation. We first propose a weakly supervised approach for training change classifiers which is able to detect pixel-level changes in aerial images. We then propose a data poisoning approach to get a reliable estimate of the accuracy that can be expected from a classifier, even when the only ground-truth available does not match the reality. Both are assessed on practical land use and land cover applications.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"13 1","pages":"5602-5605"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Learning to Understand Earth Observation Images with Weak and Unreliable Ground Truth\",\"authors\":\"R. C. Daudt, Adrien Chan-Hon-Tong, B. L. Saux, Alexandre Boulch\",\"doi\":\"10.1109/IGARSS.2019.8898563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we discuss the issues of using inexact and inaccurate ground truth in the context of supervised learning. To leverage large amounts of Earth observation data for training algorithms, one often has to use ground truth which was not been carefully assessed. We address both the problems of training and evaluation. We first propose a weakly supervised approach for training change classifiers which is able to detect pixel-level changes in aerial images. We then propose a data poisoning approach to get a reliable estimate of the accuracy that can be expected from a classifier, even when the only ground-truth available does not match the reality. Both are assessed on practical land use and land cover applications.\",\"PeriodicalId\":13262,\"journal\":{\"name\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"13 1\",\"pages\":\"5602-5605\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2019.8898563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8898563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning to Understand Earth Observation Images with Weak and Unreliable Ground Truth
In this paper we discuss the issues of using inexact and inaccurate ground truth in the context of supervised learning. To leverage large amounts of Earth observation data for training algorithms, one often has to use ground truth which was not been carefully assessed. We address both the problems of training and evaluation. We first propose a weakly supervised approach for training change classifiers which is able to detect pixel-level changes in aerial images. We then propose a data poisoning approach to get a reliable estimate of the accuracy that can be expected from a classifier, even when the only ground-truth available does not match the reality. Both are assessed on practical land use and land cover applications.