Yusuke Ozaki, Kazuma Nagao, I. Danshita, K. Kasamatsu
{"title":"光学晶格中一维玻色子超流体中暗孤子的半经典动力学","authors":"Yusuke Ozaki, Kazuma Nagao, I. Danshita, K. Kasamatsu","doi":"10.1103/PHYSREVRESEARCH.2.033272","DOIUrl":null,"url":null,"abstract":"We study quantum dynamics of a dark soliton in a one-dimensional Bose gas in an optical lattice within the truncated Wigner approximation. A previous work has revealed that in the absence of quantum fluctuations, dynamical stability of the dark soliton significantly depends on whether its phase kink is located at a lattice site or a link of two neighboring sites. It has also shown that the dark soliton is unstable in a regime of strong quantum fluctuations regardless of the phase-kink position. To bridge the gap between the classical and strongly quantum regimes, we investigate the dynamical stability of the dark soliton in a regime of weak quantum fluctuations. We find that the position dependence of the dynamical stability gradually diminishes and eventually vanishes as the strength of quantum fluctuations increases. This classical-to-quantum crossover of the soliton stability remains even in the presence of a parabolic trapping potential. We suggest that the crossover behavior can be used for experimentally diagnosing whether the instability of a dark soliton is due to quantum fluctuations or classical dynamical instability.","PeriodicalId":8838,"journal":{"name":"arXiv: Quantum Gases","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Semiclassical dynamics of a dark soliton in a one-dimensional bosonic superfluid in an optical lattice\",\"authors\":\"Yusuke Ozaki, Kazuma Nagao, I. Danshita, K. Kasamatsu\",\"doi\":\"10.1103/PHYSREVRESEARCH.2.033272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study quantum dynamics of a dark soliton in a one-dimensional Bose gas in an optical lattice within the truncated Wigner approximation. A previous work has revealed that in the absence of quantum fluctuations, dynamical stability of the dark soliton significantly depends on whether its phase kink is located at a lattice site or a link of two neighboring sites. It has also shown that the dark soliton is unstable in a regime of strong quantum fluctuations regardless of the phase-kink position. To bridge the gap between the classical and strongly quantum regimes, we investigate the dynamical stability of the dark soliton in a regime of weak quantum fluctuations. We find that the position dependence of the dynamical stability gradually diminishes and eventually vanishes as the strength of quantum fluctuations increases. This classical-to-quantum crossover of the soliton stability remains even in the presence of a parabolic trapping potential. We suggest that the crossover behavior can be used for experimentally diagnosing whether the instability of a dark soliton is due to quantum fluctuations or classical dynamical instability.\",\"PeriodicalId\":8838,\"journal\":{\"name\":\"arXiv: Quantum Gases\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Quantum Gases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVRESEARCH.2.033272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVRESEARCH.2.033272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Semiclassical dynamics of a dark soliton in a one-dimensional bosonic superfluid in an optical lattice
We study quantum dynamics of a dark soliton in a one-dimensional Bose gas in an optical lattice within the truncated Wigner approximation. A previous work has revealed that in the absence of quantum fluctuations, dynamical stability of the dark soliton significantly depends on whether its phase kink is located at a lattice site or a link of two neighboring sites. It has also shown that the dark soliton is unstable in a regime of strong quantum fluctuations regardless of the phase-kink position. To bridge the gap between the classical and strongly quantum regimes, we investigate the dynamical stability of the dark soliton in a regime of weak quantum fluctuations. We find that the position dependence of the dynamical stability gradually diminishes and eventually vanishes as the strength of quantum fluctuations increases. This classical-to-quantum crossover of the soliton stability remains even in the presence of a parabolic trapping potential. We suggest that the crossover behavior can be used for experimentally diagnosing whether the instability of a dark soliton is due to quantum fluctuations or classical dynamical instability.