{"title":"聚丙烯酸基孔雀石绿吸收纳米杂化聚合物的合成与表征","authors":"Ashish Kumar, G. Chauhan","doi":"10.30799/jacs.225.20060202","DOIUrl":null,"url":null,"abstract":"Removal of malachite green from water bodies is an environmental concern of utmost priority. It requires adsorbents that can efficiently operate under real conditions. In view of this, a new polyacrylic acid based nano-hybrid polymer was synthesized by using sol-gel method in which acrylic acid acts as an organic part and tetraethoxysilane (TEOS) as an inorganic component. The new series of two other nano-hybrid polymers were also synthesized by using nanoparticles of iron oxide and titanium dioxide. The synthesized nano-hybrid polymers were extensively characterized using FTIR and XRD spectroscopic techniques. Further the synthesized nano-hybrid polymers were subjected to swelling studies with respect to different parameter such as time, temperature and pH. Malachite green was used as a cationic dye for studying the uptake behavior of synthesized polymers. Maximum retention capacity (MRC) and reusability of hybrid polymers were also evaluated up to ten cycles. The hybrid polymer, poly(AAc)/TEOS was more effective with high dye retention capacity.","PeriodicalId":14902,"journal":{"name":"Journal of Advanced Chemical Sciences","volume":"48 1","pages":"682-685"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Characterization of Polyacrylic Acid Based Nano-Hybrid Polymers for Malachite Green Uptake\",\"authors\":\"Ashish Kumar, G. Chauhan\",\"doi\":\"10.30799/jacs.225.20060202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Removal of malachite green from water bodies is an environmental concern of utmost priority. It requires adsorbents that can efficiently operate under real conditions. In view of this, a new polyacrylic acid based nano-hybrid polymer was synthesized by using sol-gel method in which acrylic acid acts as an organic part and tetraethoxysilane (TEOS) as an inorganic component. The new series of two other nano-hybrid polymers were also synthesized by using nanoparticles of iron oxide and titanium dioxide. The synthesized nano-hybrid polymers were extensively characterized using FTIR and XRD spectroscopic techniques. Further the synthesized nano-hybrid polymers were subjected to swelling studies with respect to different parameter such as time, temperature and pH. Malachite green was used as a cationic dye for studying the uptake behavior of synthesized polymers. Maximum retention capacity (MRC) and reusability of hybrid polymers were also evaluated up to ten cycles. The hybrid polymer, poly(AAc)/TEOS was more effective with high dye retention capacity.\",\"PeriodicalId\":14902,\"journal\":{\"name\":\"Journal of Advanced Chemical Sciences\",\"volume\":\"48 1\",\"pages\":\"682-685\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Chemical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30799/jacs.225.20060202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Chemical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30799/jacs.225.20060202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis and Characterization of Polyacrylic Acid Based Nano-Hybrid Polymers for Malachite Green Uptake
Removal of malachite green from water bodies is an environmental concern of utmost priority. It requires adsorbents that can efficiently operate under real conditions. In view of this, a new polyacrylic acid based nano-hybrid polymer was synthesized by using sol-gel method in which acrylic acid acts as an organic part and tetraethoxysilane (TEOS) as an inorganic component. The new series of two other nano-hybrid polymers were also synthesized by using nanoparticles of iron oxide and titanium dioxide. The synthesized nano-hybrid polymers were extensively characterized using FTIR and XRD spectroscopic techniques. Further the synthesized nano-hybrid polymers were subjected to swelling studies with respect to different parameter such as time, temperature and pH. Malachite green was used as a cationic dye for studying the uptake behavior of synthesized polymers. Maximum retention capacity (MRC) and reusability of hybrid polymers were also evaluated up to ten cycles. The hybrid polymer, poly(AAc)/TEOS was more effective with high dye retention capacity.