许多水母星系。低红移星团中的无线电尾

IF 27.8 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS The Astronomy and Astrophysics Review Pub Date : 2021-04-12 DOI:10.1051/0004-6361/202140784
I. Roberts, R. Weeren, S. McGee, A. Botteon, A. Drabent, A. Ignesti, H. Rottgering, T. Shimwell, C. Tasse
{"title":"许多水母星系。低红移星团中的无线电尾","authors":"I. Roberts, R. Weeren, S. McGee, A. Botteon, A. Drabent, A. Ignesti, H. Rottgering, T. Shimwell, C. Tasse","doi":"10.1051/0004-6361/202140784","DOIUrl":null,"url":null,"abstract":"In this paper we present a large sample of jellyfish galaxies in low redshift clusters (z<0.05), identified through 120-168 MHz radio continuum from the LOFAR Two-metre Sky Survey (LoTSS). From a parent sample of 29 X-ray-detected SDSS galaxy clusters and their spectroscopic members, we visually identify 95 star-forming, LoTSS jellyfish galaxies with 144 MHz radio tails. Star formation rates (SFRs) and stellar masses are obtained for all galaxies from SED fits. For each jellyfish galaxy we determine the tail orientation with respect to the cluster centre and quantify the prominence of the radio tails with the 144 MHz shape asymmetry. After carefully accounting for redshift-dependent selection effects, we find that the frequency of jellyfish galaxies is relatively constant from cluster to cluster. LoTSS jellyfish galaxies are preferentially found at small clustercentric radius and large velocity offsets within their host clusters and have radio tails that are oriented away from the cluster centre. These galaxies also show enhanced star formation, relative to both 'normal' cluster galaxies and isolated field galaxies, but generally fall within the scatter of the L144MHz - SFR relation. The properties of the LoTSS jellyfish galaxies identified in this work are fully consistent with expectations from ram pressure stripping. This large sample of jellyfish galaxies will be valuable for further constraining ram pressure stripping and star formation quenching in nearby galaxy clusters. We show that LOFAR is a powerful instrument for identifying ram pressure stripped galaxies across extremely wide fields. Moving forward we will push the search for jellyfish galaxies beyond this initial cluster sample, including a comprehensive survey of the galaxy group regime.","PeriodicalId":785,"journal":{"name":"The Astronomy and Astrophysics Review","volume":"130 1","pages":""},"PeriodicalIF":27.8000,"publicationDate":"2021-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"LoTSS jellyfish galaxies. I. Radio tails in low redshift clusters\",\"authors\":\"I. Roberts, R. Weeren, S. McGee, A. Botteon, A. Drabent, A. Ignesti, H. Rottgering, T. Shimwell, C. Tasse\",\"doi\":\"10.1051/0004-6361/202140784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a large sample of jellyfish galaxies in low redshift clusters (z<0.05), identified through 120-168 MHz radio continuum from the LOFAR Two-metre Sky Survey (LoTSS). From a parent sample of 29 X-ray-detected SDSS galaxy clusters and their spectroscopic members, we visually identify 95 star-forming, LoTSS jellyfish galaxies with 144 MHz radio tails. Star formation rates (SFRs) and stellar masses are obtained for all galaxies from SED fits. For each jellyfish galaxy we determine the tail orientation with respect to the cluster centre and quantify the prominence of the radio tails with the 144 MHz shape asymmetry. After carefully accounting for redshift-dependent selection effects, we find that the frequency of jellyfish galaxies is relatively constant from cluster to cluster. LoTSS jellyfish galaxies are preferentially found at small clustercentric radius and large velocity offsets within their host clusters and have radio tails that are oriented away from the cluster centre. These galaxies also show enhanced star formation, relative to both 'normal' cluster galaxies and isolated field galaxies, but generally fall within the scatter of the L144MHz - SFR relation. The properties of the LoTSS jellyfish galaxies identified in this work are fully consistent with expectations from ram pressure stripping. This large sample of jellyfish galaxies will be valuable for further constraining ram pressure stripping and star formation quenching in nearby galaxy clusters. We show that LOFAR is a powerful instrument for identifying ram pressure stripped galaxies across extremely wide fields. Moving forward we will push the search for jellyfish galaxies beyond this initial cluster sample, including a comprehensive survey of the galaxy group regime.\",\"PeriodicalId\":785,\"journal\":{\"name\":\"The Astronomy and Astrophysics Review\",\"volume\":\"130 1\",\"pages\":\"\"},\"PeriodicalIF\":27.8000,\"publicationDate\":\"2021-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astronomy and Astrophysics Review\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://doi.org/10.1051/0004-6361/202140784\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astronomy and Astrophysics Review","FirstCategoryId":"4","ListUrlMain":"https://doi.org/10.1051/0004-6361/202140784","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 12

摘要

在本文中,我们展示了低红移星团(z<0.05)中的水母星系的大样本,通过LOFAR两米巡天(LoTSS)的120-168 MHz无线电连续体识别。从29个x射线探测到的SDSS星系团及其光谱成员的母样本中,我们视觉上识别出95个恒星形成的LoTSS水母星系,它们具有144 MHz的射电尾巴。所有星系的恒星形成速率(SFRs)和恒星质量都是由SED拟合得到的。对于每个水母星系,我们确定了相对于星团中心的尾部方向,并量化了144 MHz形状不对称的射电尾部的突出。在仔细考虑了红移相关的选择效应后,我们发现水母星系的频率在星团之间相对恒定。LoTSS水母星系优先被发现在小的星团中心半径和在其主星团内的大速度偏移处,并且具有远离星团中心的射电尾巴。与“正常”星团星系和孤立场星系相比,这些星系也显示出增强的恒星形成,但通常落在L144MHz - SFR关系的散射范围内。在这项工作中确定的LoTSS水母星系的性质与冲压压力剥离的预期完全一致。这个水母星系的大样本将对进一步限制附近星系团的冲压压力剥离和恒星形成淬火有价值。我们表明,LOFAR是一种强大的仪器,可以在非常宽的区域内识别ram压力剥离星系。下一步,我们将推动对水母星系的搜索,超越这个最初的星团样本,包括对星系群制度的全面调查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LoTSS jellyfish galaxies. I. Radio tails in low redshift clusters
In this paper we present a large sample of jellyfish galaxies in low redshift clusters (z<0.05), identified through 120-168 MHz radio continuum from the LOFAR Two-metre Sky Survey (LoTSS). From a parent sample of 29 X-ray-detected SDSS galaxy clusters and their spectroscopic members, we visually identify 95 star-forming, LoTSS jellyfish galaxies with 144 MHz radio tails. Star formation rates (SFRs) and stellar masses are obtained for all galaxies from SED fits. For each jellyfish galaxy we determine the tail orientation with respect to the cluster centre and quantify the prominence of the radio tails with the 144 MHz shape asymmetry. After carefully accounting for redshift-dependent selection effects, we find that the frequency of jellyfish galaxies is relatively constant from cluster to cluster. LoTSS jellyfish galaxies are preferentially found at small clustercentric radius and large velocity offsets within their host clusters and have radio tails that are oriented away from the cluster centre. These galaxies also show enhanced star formation, relative to both 'normal' cluster galaxies and isolated field galaxies, but generally fall within the scatter of the L144MHz - SFR relation. The properties of the LoTSS jellyfish galaxies identified in this work are fully consistent with expectations from ram pressure stripping. This large sample of jellyfish galaxies will be valuable for further constraining ram pressure stripping and star formation quenching in nearby galaxy clusters. We show that LOFAR is a powerful instrument for identifying ram pressure stripped galaxies across extremely wide fields. Moving forward we will push the search for jellyfish galaxies beyond this initial cluster sample, including a comprehensive survey of the galaxy group regime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Astronomy and Astrophysics Review
The Astronomy and Astrophysics Review 地学天文-天文与天体物理
CiteScore
45.00
自引率
0.80%
发文量
7
期刊介绍: The Astronomy and Astrophysics Review is a journal that covers all areas of astronomy and astrophysics. It includes subjects related to other fields such as laboratory or particle physics, cosmic ray physics, studies in the solar system, astrobiology, instrumentation, and computational and statistical methods with specific astronomical applications. The frequency of review articles depends on the level of activity in different areas. The journal focuses on publishing review articles that are scientifically rigorous and easily comprehensible. These articles serve as a valuable resource for scientists, students, researchers, and lecturers who want to explore new or unfamiliar fields. The journal is abstracted and indexed in various databases including the Astrophysics Data System (ADS), BFI List, CNKI, CNPIEC, Current Contents/Physical, Chemical and Earth Sciences, Dimensions, EBSCO Academic Search, EI Compendex, Japanese Science and Technology, and more.
期刊最新文献
M 87: a cosmic laboratory for deciphering black hole accretion and jet formation Cepheids as distance indicators and stellar tracers Experimental studies of black holes: status and future prospects The formation and cosmic evolution of dust in the early Universe: I. Dust sources The Fermi/eROSITA bubbles: a look into the nuclear outflow from the Milky Way
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1