BarkDroid: Android恶意软件检测使用吠叫频率倒谱系数

Paul Tarwireyi, A. Terzoli, M. Adigun
{"title":"BarkDroid: Android恶意软件检测使用吠叫频率倒谱系数","authors":"Paul Tarwireyi, A. Terzoli, M. Adigun","doi":"10.24002/ijis.v5i1.6266","DOIUrl":null,"url":null,"abstract":"Since their inaugural releases in 2007, Google’s Android and Apple’s iOS have grown to dominate the mobile OS market share. Currently, they jointly possess over 99% of the global market share with Android being the leading mobile Operating System of choice worldwide, controlling close to 70% of the market share. Mobile devices have enabled the exponential growth of a plethora of mobile applications that play key roles in enabling many use cases that are pivotal in our daily lives. On the other hand, access to a large pool of potential end users is available to both legitimate and nefarious applications, thus making mobile devices a burgeoning target of malicious applications. Current malware detection solutions rely on tedious, time-consuming, knowledge-based, and manual processes to identify malware. This paper presents BarkDroid, a novel Android malware detection technique that uses the low-level Bark Frequency Cepstral Coefficients audio features to detect malware. The results obtained outperform results obtained using other features on the same datasets. BarkDroid achieved 97.9% accuracy, 98.5% precision, an F1 score of 98.6%, and shorter execution times.","PeriodicalId":34118,"journal":{"name":"Indonesian Journal of Information Systems","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"BarkDroid: Android Malware Detection Using Bark Frequency Cepstral Coefficients\",\"authors\":\"Paul Tarwireyi, A. Terzoli, M. Adigun\",\"doi\":\"10.24002/ijis.v5i1.6266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since their inaugural releases in 2007, Google’s Android and Apple’s iOS have grown to dominate the mobile OS market share. Currently, they jointly possess over 99% of the global market share with Android being the leading mobile Operating System of choice worldwide, controlling close to 70% of the market share. Mobile devices have enabled the exponential growth of a plethora of mobile applications that play key roles in enabling many use cases that are pivotal in our daily lives. On the other hand, access to a large pool of potential end users is available to both legitimate and nefarious applications, thus making mobile devices a burgeoning target of malicious applications. Current malware detection solutions rely on tedious, time-consuming, knowledge-based, and manual processes to identify malware. This paper presents BarkDroid, a novel Android malware detection technique that uses the low-level Bark Frequency Cepstral Coefficients audio features to detect malware. The results obtained outperform results obtained using other features on the same datasets. BarkDroid achieved 97.9% accuracy, 98.5% precision, an F1 score of 98.6%, and shorter execution times.\",\"PeriodicalId\":34118,\"journal\":{\"name\":\"Indonesian Journal of Information Systems\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24002/ijis.v5i1.6266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24002/ijis.v5i1.6266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

自2007年首次发布以来,b谷歌的Android和苹果的iOS已经发展成为主导移动操作系统市场份额的两个平台。目前,他们共同拥有超过99%的全球市场份额,而Android是全球领先的移动操作系统,控制着近70%的市场份额。移动设备使大量移动应用程序呈指数级增长,这些应用程序在我们日常生活中至关重要的许多用例中发挥关键作用。另一方面,合法和恶意应用程序都可以访问大量潜在的最终用户,从而使移动设备成为恶意应用程序的快速增长的目标。当前的恶意软件检测解决方案依赖于繁琐、耗时、基于知识和手动的过程来识别恶意软件。本文提出了一种新的Android恶意软件检测技术,该技术利用低级吠叫频率倒谱系数音频特征来检测恶意软件。所获得的结果优于在相同数据集上使用其他特征获得的结果。BarkDroid的准确率为97.9%,精密度为98.5%,F1得分为98.6%,执行时间更短。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BarkDroid: Android Malware Detection Using Bark Frequency Cepstral Coefficients
Since their inaugural releases in 2007, Google’s Android and Apple’s iOS have grown to dominate the mobile OS market share. Currently, they jointly possess over 99% of the global market share with Android being the leading mobile Operating System of choice worldwide, controlling close to 70% of the market share. Mobile devices have enabled the exponential growth of a plethora of mobile applications that play key roles in enabling many use cases that are pivotal in our daily lives. On the other hand, access to a large pool of potential end users is available to both legitimate and nefarious applications, thus making mobile devices a burgeoning target of malicious applications. Current malware detection solutions rely on tedious, time-consuming, knowledge-based, and manual processes to identify malware. This paper presents BarkDroid, a novel Android malware detection technique that uses the low-level Bark Frequency Cepstral Coefficients audio features to detect malware. The results obtained outperform results obtained using other features on the same datasets. BarkDroid achieved 97.9% accuracy, 98.5% precision, an F1 score of 98.6%, and shorter execution times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
7
审稿时长
12 weeks
期刊最新文献
The Implementation of Business Process Blockchain Technology Based of MSCWR SmartBox Model Priority Scheduling Implementation for Exam Schedule SPAM (Smart Patient Monitoring System) using Structural Similarity Index Measurement An Investigation of Nurses' Perceptions of the Usefulness and Easiness of Using Electronic Medical Records in Saudi Arabia: A Technology Acceptance Model Mobile Application for Medicinal Plants Recognition from Leaf Image Using Convolutional Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1