用共识检测工具识别抄袭的编程作业

IF 2.1 Q1 EDUCATION & EDUCATIONAL RESEARCH Informatics in Education Pub Date : 2022-04-14 DOI:10.15388/infedu.2023.05
Hayden Cheers, Yuqing Lin, Weigen Yan
{"title":"用共识检测工具识别抄袭的编程作业","authors":"Hayden Cheers, Yuqing Lin, Weigen Yan","doi":"10.15388/infedu.2023.05","DOIUrl":null,"url":null,"abstract":"Source code plagiarism is a common occurrence in undergraduate computer science education. Many source code plagiarism detection tools have been proposed to address this problem. However, most of these tools only measure the similarity between assignment submissions, and do not actually identify which are suspicious of plagiarism. This work presents a semi-automatic approach that enables the indication of suspicious assignment submissions by analysing source code similarity scores among the submissions. The proposed approach seeks the consensus of multiple source code plagiarism detection tools in order to identify program pairs that are consistently evaluated with high similarity. A case study is presented to demonstrate the use of the proposed approach. The results of this case study indicate that it can accurately identify assignment submissions that are suspicious of plagiarism.","PeriodicalId":45270,"journal":{"name":"Informatics in Education","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2022-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Identifying Plagiarised Programming Assignments with Detection Tool Consensus\",\"authors\":\"Hayden Cheers, Yuqing Lin, Weigen Yan\",\"doi\":\"10.15388/infedu.2023.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Source code plagiarism is a common occurrence in undergraduate computer science education. Many source code plagiarism detection tools have been proposed to address this problem. However, most of these tools only measure the similarity between assignment submissions, and do not actually identify which are suspicious of plagiarism. This work presents a semi-automatic approach that enables the indication of suspicious assignment submissions by analysing source code similarity scores among the submissions. The proposed approach seeks the consensus of multiple source code plagiarism detection tools in order to identify program pairs that are consistently evaluated with high similarity. A case study is presented to demonstrate the use of the proposed approach. The results of this case study indicate that it can accurately identify assignment submissions that are suspicious of plagiarism.\",\"PeriodicalId\":45270,\"journal\":{\"name\":\"Informatics in Education\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informatics in Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15388/infedu.2023.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics in Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15388/infedu.2023.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 1

摘要

源代码抄袭是计算机本科教育中常见的现象。许多源代码抄袭检测工具已经被提出来解决这个问题。然而,大多数这些工具只是衡量作业提交之间的相似性,并不能真正识别哪些是可疑的抄袭。这项工作提出了一种半自动的方法,可以通过分析提交的源代码相似度分数来指示可疑的分配提交。该方法寻求多个源代码抄袭检测工具的共识,以识别具有高相似性的一致性评估的程序对。一个案例研究被提出来证明所提出的方法的使用。本案例研究的结果表明,它可以准确地识别有抄袭嫌疑的作业提交。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identifying Plagiarised Programming Assignments with Detection Tool Consensus
Source code plagiarism is a common occurrence in undergraduate computer science education. Many source code plagiarism detection tools have been proposed to address this problem. However, most of these tools only measure the similarity between assignment submissions, and do not actually identify which are suspicious of plagiarism. This work presents a semi-automatic approach that enables the indication of suspicious assignment submissions by analysing source code similarity scores among the submissions. The proposed approach seeks the consensus of multiple source code plagiarism detection tools in order to identify program pairs that are consistently evaluated with high similarity. A case study is presented to demonstrate the use of the proposed approach. The results of this case study indicate that it can accurately identify assignment submissions that are suspicious of plagiarism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Informatics in Education
Informatics in Education EDUCATION & EDUCATIONAL RESEARCH-
CiteScore
6.10
自引率
3.70%
发文量
20
审稿时长
20 weeks
期刊介绍: INFORMATICS IN EDUCATION publishes original articles about theoretical, experimental and methodological studies in the fields of informatics (computer science) education and educational applications of information technology, ranging from primary to tertiary education. Multidisciplinary research studies that enhance our understanding of how theoretical and technological innovations translate into educational practice are most welcome. We are particularly interested in work at boundaries, both the boundaries of informatics and of education. The topics covered by INFORMATICS IN EDUCATION will range across diverse aspects of informatics (computer science) education research including: empirical studies, including composing different approaches to teach various subjects, studying availability of various concepts at a given age, measuring knowledge transfer and skills developed, addressing gender issues, etc. statistical research on big data related to informatics (computer science) activities including e.g. research on assessment, online teaching, competitions, etc. educational engineering focusing mainly on developing high quality original teaching sequences of different informatics (computer science) topics that offer new, successful ways for knowledge transfer and development of computational thinking machine learning of student''s behavior including the use of information technology to observe students in the learning process and discovering clusters of their working design and evaluation of educational tools that apply information technology in novel ways.
期刊最新文献
Productive Failure-based Programming Course to Develop Computational Thinking and Creative Problem-Solving Skills in a Korean Elementary School Number of program builds: Another criterium for assessing difficulty of a programming task? “Hear” and “Play” Students Misconceptions on Concurrent Programming using Sonic Pi Relationships between middle school students’ digital literacy skills, computer programming self-efficacy, and computational thinking self-efficacy Simulating Similarities to Maintain Academic Integrity in Programming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1