利用正交匹配追踪技术实现插管显微镜快速成像

Ahmad B. Zoubi, K. S. Alguri, Ganghun Kim, V. J. Mathews, R. Menon, J. Harley
{"title":"利用正交匹配追踪技术实现插管显微镜快速成像","authors":"Ahmad B. Zoubi, K. S. Alguri, Ganghun Kim, V. J. Mathews, R. Menon, J. Harley","doi":"10.1109/DSP-SPE.2015.7369555","DOIUrl":null,"url":null,"abstract":"Fluorescent miscroscopy is a state-of-the-art method for creating high contrast and high resolution images of microscopic structures and has found wide application in microendoscopy (i.e., imaging cellular information from an optical probe within an animal). Cannula based microscopy methods have recently shown great promise for efficient microendoscopy imaging. Yet, performing real-time imaging with cannula methods have yet to be achieved due to the high computational complexity of the algorithms used for image reconstruction. We present an approach based on compressive sensing to improve computational speed and image reconstruction quality. We compare our approach with the state-of-the-art implementation based on direct binary search, a non-linear optimization technique. Results demonstrating up to 70 times improvement in the computation time and visual quality of the image over the direct binary search method are included in the paper.","PeriodicalId":91992,"journal":{"name":"2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)","volume":"5 1","pages":"214-219"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fast imaging in cannula microscope using orthogonal matching pursuit\",\"authors\":\"Ahmad B. Zoubi, K. S. Alguri, Ganghun Kim, V. J. Mathews, R. Menon, J. Harley\",\"doi\":\"10.1109/DSP-SPE.2015.7369555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fluorescent miscroscopy is a state-of-the-art method for creating high contrast and high resolution images of microscopic structures and has found wide application in microendoscopy (i.e., imaging cellular information from an optical probe within an animal). Cannula based microscopy methods have recently shown great promise for efficient microendoscopy imaging. Yet, performing real-time imaging with cannula methods have yet to be achieved due to the high computational complexity of the algorithms used for image reconstruction. We present an approach based on compressive sensing to improve computational speed and image reconstruction quality. We compare our approach with the state-of-the-art implementation based on direct binary search, a non-linear optimization technique. Results demonstrating up to 70 times improvement in the computation time and visual quality of the image over the direct binary search method are included in the paper.\",\"PeriodicalId\":91992,\"journal\":{\"name\":\"2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)\",\"volume\":\"5 1\",\"pages\":\"214-219\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSP-SPE.2015.7369555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSP-SPE.2015.7369555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

荧光显微镜是一种最先进的方法,用于创建高对比度和高分辨率的显微结构图像,并在显微内窥镜(即,从动物体内的光学探针成像细胞信息)中得到广泛应用。基于套管的显微镜方法最近显示出高效显微内窥镜成像的巨大希望。然而,由于用于图像重建的算法的高计算复杂度,使用套管方法进行实时成像尚未实现。我们提出了一种基于压缩感知的方法来提高计算速度和图像重建质量。我们将我们的方法与基于直接二分搜索的最先进的实现进行比较,这是一种非线性优化技术。结果表明,与直接二值搜索方法相比,计算时间和图像视觉质量提高了70倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast imaging in cannula microscope using orthogonal matching pursuit
Fluorescent miscroscopy is a state-of-the-art method for creating high contrast and high resolution images of microscopic structures and has found wide application in microendoscopy (i.e., imaging cellular information from an optical probe within an animal). Cannula based microscopy methods have recently shown great promise for efficient microendoscopy imaging. Yet, performing real-time imaging with cannula methods have yet to be achieved due to the high computational complexity of the algorithms used for image reconstruction. We present an approach based on compressive sensing to improve computational speed and image reconstruction quality. We compare our approach with the state-of-the-art implementation based on direct binary search, a non-linear optimization technique. Results demonstrating up to 70 times improvement in the computation time and visual quality of the image over the direct binary search method are included in the paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ON THE BLOCK-SPARSITY OF MULTIPLE-MEASUREMENT VECTORS. A new method for determination of instantaneous pitch frequency from speech signals Wideband-FM demodulation for large wideband to narrowband conversion factors via multirate frequency transformations A practical strategy for spectral library partitioning and least-squares identification Question Review Model for Q&A systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1