挑衅:毒性触发检测对话从前100子reddit

Hind Almerekhi , Haewoon Kwak , Joni Salminen , Bernard J. Jansen
{"title":"挑衅:毒性触发检测对话从前100子reddit","authors":"Hind Almerekhi ,&nbsp;Haewoon Kwak ,&nbsp;Joni Salminen ,&nbsp;Bernard J. Jansen","doi":"10.1016/j.dim.2022.100019","DOIUrl":null,"url":null,"abstract":"<div><p>Promoting healthy discourse on community-based online platforms like Reddit can be challenging, especially when conversations show ominous signs of toxicity. Therefore, in this study, we find the turning points (i.e., toxicity triggers) making conversations toxic. Before finding toxicity triggers, we built and evaluated various machine learning models to detect toxicity from Reddit comments.</p><p>Subsequently, we used our best-performing model, a fine-tuned Bidirectional Encoder Representations from Transformers (BERT) model that achieved an area under the receiver operating characteristic curve (AUC) score of 0.983 to detect toxicity. Next, we constructed conversation threads and used the toxicity prediction results to build a training set for detecting toxicity triggers. This procedure entailed using our large-scale dataset to refine toxicity triggers' definition and build a trigger detection dataset using 991,806 conversation threads from the top 100 communities on Reddit. Then, we extracted a set of sentiment shift, topical shift, and context-based features from the trigger detection dataset, using them to build a dual embedding biLSTM neural network that achieved an AUC score of 0.789. Our trigger detection dataset analysis showed that specific triggering keywords are common across all communities, like ‘racist’ and ‘women’. In contrast, other triggering keywords are specific to certain communities, like ‘overwatch’ in r/Games. Implications are that toxicity trigger detection algorithms can leverage generic approaches but must also tailor detections to specific communities.</p></div>","PeriodicalId":72769,"journal":{"name":"Data and information management","volume":"6 4","pages":"Article 100019"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2543925122001176/pdfft?md5=a441c48620ba8685678f44afdb856b82&pid=1-s2.0-S2543925122001176-main.pdf","citationCount":"5","resultStr":"{\"title\":\"PROVOKE: Toxicity trigger detection in conversations from the top 100 subreddits\",\"authors\":\"Hind Almerekhi ,&nbsp;Haewoon Kwak ,&nbsp;Joni Salminen ,&nbsp;Bernard J. Jansen\",\"doi\":\"10.1016/j.dim.2022.100019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Promoting healthy discourse on community-based online platforms like Reddit can be challenging, especially when conversations show ominous signs of toxicity. Therefore, in this study, we find the turning points (i.e., toxicity triggers) making conversations toxic. Before finding toxicity triggers, we built and evaluated various machine learning models to detect toxicity from Reddit comments.</p><p>Subsequently, we used our best-performing model, a fine-tuned Bidirectional Encoder Representations from Transformers (BERT) model that achieved an area under the receiver operating characteristic curve (AUC) score of 0.983 to detect toxicity. Next, we constructed conversation threads and used the toxicity prediction results to build a training set for detecting toxicity triggers. This procedure entailed using our large-scale dataset to refine toxicity triggers' definition and build a trigger detection dataset using 991,806 conversation threads from the top 100 communities on Reddit. Then, we extracted a set of sentiment shift, topical shift, and context-based features from the trigger detection dataset, using them to build a dual embedding biLSTM neural network that achieved an AUC score of 0.789. Our trigger detection dataset analysis showed that specific triggering keywords are common across all communities, like ‘racist’ and ‘women’. In contrast, other triggering keywords are specific to certain communities, like ‘overwatch’ in r/Games. Implications are that toxicity trigger detection algorithms can leverage generic approaches but must also tailor detections to specific communities.</p></div>\",\"PeriodicalId\":72769,\"journal\":{\"name\":\"Data and information management\",\"volume\":\"6 4\",\"pages\":\"Article 100019\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2543925122001176/pdfft?md5=a441c48620ba8685678f44afdb856b82&pid=1-s2.0-S2543925122001176-main.pdf\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data and information management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2543925122001176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data and information management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2543925122001176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在Reddit等以社区为基础的在线平台上推广健康的话语可能具有挑战性,尤其是当对话显示出有害的不祥迹象时。因此,在这项研究中,我们发现转折点(即毒性触发器)使对话有毒。在发现毒性触发因素之前,我们建立并评估了各种机器学习模型,以检测Reddit评论中的毒性。随后,我们使用了我们表现最好的模型,一个经过微调的双向编码器表示来自变压器(BERT)模型,该模型在接收者工作特征曲线(AUC)评分下的面积达到0.983,以检测毒性。接下来,我们构建对话线程,并使用毒性预测结果构建用于检测毒性触发器的训练集。这个过程需要使用我们的大规模数据集来完善毒性触发器的定义,并使用来自Reddit前100个社区的991,806个对话线程构建触发器检测数据集。然后,我们从触发检测数据集中提取了一组情感转移、主题转移和基于上下文的特征,利用它们构建了一个双嵌入biLSTM神经网络,该神经网络的AUC得分为0.789。我们的触发检测数据集分析显示,特定的触发关键词在所有社区中都很常见,比如“种族主义者”和“女性”。相比之下,其他触发关键词则是特定于特定社区,如r/Games中的“守望先锋”。这意味着毒性触发检测算法可以利用通用方法,但也必须针对特定社区定制检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PROVOKE: Toxicity trigger detection in conversations from the top 100 subreddits

Promoting healthy discourse on community-based online platforms like Reddit can be challenging, especially when conversations show ominous signs of toxicity. Therefore, in this study, we find the turning points (i.e., toxicity triggers) making conversations toxic. Before finding toxicity triggers, we built and evaluated various machine learning models to detect toxicity from Reddit comments.

Subsequently, we used our best-performing model, a fine-tuned Bidirectional Encoder Representations from Transformers (BERT) model that achieved an area under the receiver operating characteristic curve (AUC) score of 0.983 to detect toxicity. Next, we constructed conversation threads and used the toxicity prediction results to build a training set for detecting toxicity triggers. This procedure entailed using our large-scale dataset to refine toxicity triggers' definition and build a trigger detection dataset using 991,806 conversation threads from the top 100 communities on Reddit. Then, we extracted a set of sentiment shift, topical shift, and context-based features from the trigger detection dataset, using them to build a dual embedding biLSTM neural network that achieved an AUC score of 0.789. Our trigger detection dataset analysis showed that specific triggering keywords are common across all communities, like ‘racist’ and ‘women’. In contrast, other triggering keywords are specific to certain communities, like ‘overwatch’ in r/Games. Implications are that toxicity trigger detection algorithms can leverage generic approaches but must also tailor detections to specific communities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data and information management
Data and information management Management Information Systems, Library and Information Sciences
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
55 days
期刊最新文献
How readers attentive and inattentive to task-related information scan: An eye-tracking study Human-AI interaction research agenda: A user-centered perspective Patterns in paradata preferences among the makers and reusers of archaeological data Empirical insights into the interaction effects of groups at high risk of depression on online social platforms with NLP-based sentiment analysis Impact factor does not predict long-term article impact across 15 journals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1