{"title":"密度矩阵分解的伪bcs波函数:在辅助场量子蒙特卡罗中的应用","authors":"Zhi-Guang Xiao, Hao Shi, Shiwei Zhang","doi":"10.1103/PHYSREVRESEARCH.3.013065","DOIUrl":null,"url":null,"abstract":"We present a method to construct pseudo-BCS wave functions from the one-body density matrix. The resulting many-body wave function, which can be produced for any fermion systems, including those with purely repulsive interactions, has the form of a number-projected BCS form, or antisymmetrized germinal power (AGP). Such wave functions provide a better ansatz for correlated fermion systems than a single Slater determinant, and often better than a linear combination of Slater determinants (for example from a truncated active space calculation). We describe a procedure to build such a wave function conveniently from a given reduced density matrix of the system, rather than from a mean-field solution (which gives a Slater determinant for repulsive interactions). The pseudo-BCS wave function thus obtained reproduces the density matrix or minimizes the difference between the input and resulting density matrices. One application of the pseudo-BCS wave function is in auxiliary-field quantum Monte Carlo (AFQMC) calculations as the trial wave function to control the sign/phase problem. AFQMC is often among the most accurate general methods for correlated fermion systems. We show that the pseudo-BCS form further reduces the constraint bias and leads to improved accuracy compared to the usual Slater determinant trial wave functions, using the two-dimensional Hubbard model as an example. Furthermore, the pseudo-BCS trial wave function allows a new systematically improvable self-consistent approach, with pseudo-BCS trial wave function iteratively generated by AFQMC via the one-body density matrix.","PeriodicalId":8511,"journal":{"name":"arXiv: Strongly Correlated Electrons","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Pseudo-BCS wave function from density matrix decomposition: Application in auxiliary-field quantum Monte Carlo\",\"authors\":\"Zhi-Guang Xiao, Hao Shi, Shiwei Zhang\",\"doi\":\"10.1103/PHYSREVRESEARCH.3.013065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a method to construct pseudo-BCS wave functions from the one-body density matrix. The resulting many-body wave function, which can be produced for any fermion systems, including those with purely repulsive interactions, has the form of a number-projected BCS form, or antisymmetrized germinal power (AGP). Such wave functions provide a better ansatz for correlated fermion systems than a single Slater determinant, and often better than a linear combination of Slater determinants (for example from a truncated active space calculation). We describe a procedure to build such a wave function conveniently from a given reduced density matrix of the system, rather than from a mean-field solution (which gives a Slater determinant for repulsive interactions). The pseudo-BCS wave function thus obtained reproduces the density matrix or minimizes the difference between the input and resulting density matrices. One application of the pseudo-BCS wave function is in auxiliary-field quantum Monte Carlo (AFQMC) calculations as the trial wave function to control the sign/phase problem. AFQMC is often among the most accurate general methods for correlated fermion systems. We show that the pseudo-BCS form further reduces the constraint bias and leads to improved accuracy compared to the usual Slater determinant trial wave functions, using the two-dimensional Hubbard model as an example. Furthermore, the pseudo-BCS trial wave function allows a new systematically improvable self-consistent approach, with pseudo-BCS trial wave function iteratively generated by AFQMC via the one-body density matrix.\",\"PeriodicalId\":8511,\"journal\":{\"name\":\"arXiv: Strongly Correlated Electrons\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Strongly Correlated Electrons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVRESEARCH.3.013065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Strongly Correlated Electrons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVRESEARCH.3.013065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pseudo-BCS wave function from density matrix decomposition: Application in auxiliary-field quantum Monte Carlo
We present a method to construct pseudo-BCS wave functions from the one-body density matrix. The resulting many-body wave function, which can be produced for any fermion systems, including those with purely repulsive interactions, has the form of a number-projected BCS form, or antisymmetrized germinal power (AGP). Such wave functions provide a better ansatz for correlated fermion systems than a single Slater determinant, and often better than a linear combination of Slater determinants (for example from a truncated active space calculation). We describe a procedure to build such a wave function conveniently from a given reduced density matrix of the system, rather than from a mean-field solution (which gives a Slater determinant for repulsive interactions). The pseudo-BCS wave function thus obtained reproduces the density matrix or minimizes the difference between the input and resulting density matrices. One application of the pseudo-BCS wave function is in auxiliary-field quantum Monte Carlo (AFQMC) calculations as the trial wave function to control the sign/phase problem. AFQMC is often among the most accurate general methods for correlated fermion systems. We show that the pseudo-BCS form further reduces the constraint bias and leads to improved accuracy compared to the usual Slater determinant trial wave functions, using the two-dimensional Hubbard model as an example. Furthermore, the pseudo-BCS trial wave function allows a new systematically improvable self-consistent approach, with pseudo-BCS trial wave function iteratively generated by AFQMC via the one-body density matrix.