基于单方程和Wray-Agarwal湍流模型的压气机叶栅流动数值模拟及设计优化

IF 1.1 4区 工程技术 Q4 MECHANICS International Journal of Computational Fluid Dynamics Pub Date : 2022-09-14 DOI:10.1080/10618562.2023.2187050
Zhihui Li, R. Agarwal
{"title":"基于单方程和Wray-Agarwal湍流模型的压气机叶栅流动数值模拟及设计优化","authors":"Zhihui Li, R. Agarwal","doi":"10.1080/10618562.2023.2187050","DOIUrl":null,"url":null,"abstract":"The unsteady simulations are conducted, and the computed results with WA model are compared with the experimental data in conjunction with the simulation results obtained using traditional models. It is shown that on the mid-span sections of the cascade airfoils the distributions of near-wall static pressure coefficients from each turbulence model agree well with the experimental data. On the lower spanwise sections, the discrepancy between the numerical simulations and experimental data generally increases. Among the three turbulence models, the WA turbulence model shows better agreement with the experimental data in predicting the spanwise total pressure losses downstream of the cascade blade. The WA model is then embedded into the adjoint optimisation loop to test its capability in minimising the flow losses in the compressor cascade passage. The optimisation results show that the total pressure loss coefficient of the optimised compressor cascade is reduced by 18.1% compared to the baseline design.","PeriodicalId":56288,"journal":{"name":"International Journal of Computational Fluid Dynamics","volume":"41 1","pages":"705 - 718"},"PeriodicalIF":1.1000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Simulations and Design Optimization of Compressor Cascade Flow Using One Equation and Wray-Agarwal Turbulence Model\",\"authors\":\"Zhihui Li, R. Agarwal\",\"doi\":\"10.1080/10618562.2023.2187050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The unsteady simulations are conducted, and the computed results with WA model are compared with the experimental data in conjunction with the simulation results obtained using traditional models. It is shown that on the mid-span sections of the cascade airfoils the distributions of near-wall static pressure coefficients from each turbulence model agree well with the experimental data. On the lower spanwise sections, the discrepancy between the numerical simulations and experimental data generally increases. Among the three turbulence models, the WA turbulence model shows better agreement with the experimental data in predicting the spanwise total pressure losses downstream of the cascade blade. The WA model is then embedded into the adjoint optimisation loop to test its capability in minimising the flow losses in the compressor cascade passage. The optimisation results show that the total pressure loss coefficient of the optimised compressor cascade is reduced by 18.1% compared to the baseline design.\",\"PeriodicalId\":56288,\"journal\":{\"name\":\"International Journal of Computational Fluid Dynamics\",\"volume\":\"41 1\",\"pages\":\"705 - 718\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Fluid Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10618562.2023.2187050\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10618562.2023.2187050","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

进行了非定常数值模拟,并将WA模型的计算结果与实验数据进行了比较,并结合传统模型的仿真结果进行了比较。结果表明,在叶栅翼型跨中截面上,各湍流模型的近壁静压系数分布与实验数据吻合较好。在较低的展向截面上,数值模拟与实验数据的差异普遍增大。在三种湍流模型中,WA湍流模型在预测叶栅下游展向总压损失方面与实验数据吻合较好。然后将WA模型嵌入到伴随优化回路中,以测试其在最小化压缩机叶栅通道中的流动损失方面的能力。优化结果表明,与基准设计相比,优化后的压气机叶栅总压损失系数降低了18.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical Simulations and Design Optimization of Compressor Cascade Flow Using One Equation and Wray-Agarwal Turbulence Model
The unsteady simulations are conducted, and the computed results with WA model are compared with the experimental data in conjunction with the simulation results obtained using traditional models. It is shown that on the mid-span sections of the cascade airfoils the distributions of near-wall static pressure coefficients from each turbulence model agree well with the experimental data. On the lower spanwise sections, the discrepancy between the numerical simulations and experimental data generally increases. Among the three turbulence models, the WA turbulence model shows better agreement with the experimental data in predicting the spanwise total pressure losses downstream of the cascade blade. The WA model is then embedded into the adjoint optimisation loop to test its capability in minimising the flow losses in the compressor cascade passage. The optimisation results show that the total pressure loss coefficient of the optimised compressor cascade is reduced by 18.1% compared to the baseline design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
7.70%
发文量
25
审稿时长
3 months
期刊介绍: The International Journal of Computational Fluid Dynamics publishes innovative CFD research, both fundamental and applied, with applications in a wide variety of fields. The Journal emphasizes accurate predictive tools for 3D flow analysis and design, and those promoting a deeper understanding of the physics of 3D fluid motion. Relevant and innovative practical and industrial 3D applications, as well as those of an interdisciplinary nature, are encouraged.
期刊最新文献
The Method of Manufactured Solutions to Construct Flow Fields Across An Interface A New Fifth-Order Weighted Compact Nonlinear Scheme with Multi-Order Candidates Weighting for Hyperbolic Conservation Laws Investigation of Blade Cascade Torsional Flutter Using the Discontinuous Galerkin Approach in Correlation with Experimental Measurements Exploring Dual Solutions and Characterisation of Viscous Dissipation Effects on MHD Flow along a Stretching Sheet with Variable Thickness: A Computational Approach Analysis of Slip Effects on the Stability and Interactions of Mach 5 Flat-Plate Boundary-Layer Waves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1