用神经网络算法恢复具有重运动散射质子谱的极功率激光脉冲的焦点参数

IF 4.8 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Matter and Radiation at Extremes Pub Date : 2023-01-01 DOI:10.1063/5.0126571
N. Bukharskii, O. E. Vais, P. Korneev, V. Bychenkov
{"title":"用神经网络算法恢复具有重运动散射质子谱的极功率激光脉冲的焦点参数","authors":"N. Bukharskii, O. E. Vais, P. Korneev, V. Bychenkov","doi":"10.1063/5.0126571","DOIUrl":null,"url":null,"abstract":"A neural network-based approach is proposed both for reconstructing the focal spot intensity profile and for estimating the peak intensity of a high-power tightly focused laser pulse using the angular energy distributions of protons accelerated by the pulse from rarefied gases. For these purposes, we use a convolutional neural network architecture. Training and testing datasets are calculated using the test particle method, with the laser description in the form of Stratton–Chu integrals, which model laser pulses focused by an off-axis parabolic mirror down to the diffraction limit. To demonstrate the power and robustness of this method, we discuss the reconstruction of axially symmetric intensity profiles for laser pulses with intensities and focal diameters in the ranges of 1021–1023 W cm−2 and ∼(1–4) λ, respectively. This approach has prospects for implementation at higher intensities and with asymmetric laser beams, and it can provide a valuable diagnostic method for emerging extremely intense laser facilities.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"18 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Restoration of the focal parameters for an extreme-power laser pulse with ponderomotively scattered proton spectra by using a neural network algorithm\",\"authors\":\"N. Bukharskii, O. E. Vais, P. Korneev, V. Bychenkov\",\"doi\":\"10.1063/5.0126571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A neural network-based approach is proposed both for reconstructing the focal spot intensity profile and for estimating the peak intensity of a high-power tightly focused laser pulse using the angular energy distributions of protons accelerated by the pulse from rarefied gases. For these purposes, we use a convolutional neural network architecture. Training and testing datasets are calculated using the test particle method, with the laser description in the form of Stratton–Chu integrals, which model laser pulses focused by an off-axis parabolic mirror down to the diffraction limit. To demonstrate the power and robustness of this method, we discuss the reconstruction of axially symmetric intensity profiles for laser pulses with intensities and focal diameters in the ranges of 1021–1023 W cm−2 and ∼(1–4) λ, respectively. This approach has prospects for implementation at higher intensities and with asymmetric laser beams, and it can provide a valuable diagnostic method for emerging extremely intense laser facilities.\",\"PeriodicalId\":54221,\"journal\":{\"name\":\"Matter and Radiation at Extremes\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter and Radiation at Extremes\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0126571\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter and Radiation at Extremes","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0126571","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种基于神经网络的方法,利用稀薄气体脉冲加速质子的角能分布,重建高功率紧密聚焦激光脉冲的焦点光斑强度分布图,并估计其峰值强度。出于这些目的,我们使用卷积神经网络架构。训练和测试数据集使用测试粒子法计算,激光描述以Stratton-Chu积分的形式进行,该积分模拟了由离轴抛物面镜聚焦到衍射极限的激光脉冲。为了证明该方法的有效性和鲁棒性,我们讨论了在1021-1023 W cm−2和~ (1-4)λ范围内的激光脉冲的轴对称强度分布的重建。该方法在高强度和非对称激光束下具有应用前景,可以为新兴的极强激光设备提供一种有价值的诊断方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Restoration of the focal parameters for an extreme-power laser pulse with ponderomotively scattered proton spectra by using a neural network algorithm
A neural network-based approach is proposed both for reconstructing the focal spot intensity profile and for estimating the peak intensity of a high-power tightly focused laser pulse using the angular energy distributions of protons accelerated by the pulse from rarefied gases. For these purposes, we use a convolutional neural network architecture. Training and testing datasets are calculated using the test particle method, with the laser description in the form of Stratton–Chu integrals, which model laser pulses focused by an off-axis parabolic mirror down to the diffraction limit. To demonstrate the power and robustness of this method, we discuss the reconstruction of axially symmetric intensity profiles for laser pulses with intensities and focal diameters in the ranges of 1021–1023 W cm−2 and ∼(1–4) λ, respectively. This approach has prospects for implementation at higher intensities and with asymmetric laser beams, and it can provide a valuable diagnostic method for emerging extremely intense laser facilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matter and Radiation at Extremes
Matter and Radiation at Extremes Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
8.60
自引率
9.80%
发文量
160
审稿时长
15 weeks
期刊介绍: Matter and Radiation at Extremes (MRE), is committed to the publication of original and impactful research and review papers that address extreme states of matter and radiation, and the associated science and technology that are employed to produce and diagnose these conditions in the laboratory. Drivers, targets and diagnostics are included along with related numerical simulation and computational methods. It aims to provide a peer-reviewed platform for the international physics community and promote worldwide dissemination of the latest and impactful research in related fields.
期刊最新文献
Compact laser wakefield acceleration toward high energy with micro-plasma parabola Hollow ion atomic structure and X-ray emission in dense hot plasmas Exotic compounds of monovalent calcium synthesized at high pressure Experimental measurements of gamma-photon production and estimation of electron/positron production on the PETAL laser facility Benchmark simulations of radiative transfer in participating binary stochastic mixtures in two dimensions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1