{"title":"大脑是自然形成的图灵机","authors":"J. Weng","doi":"10.1109/IJCNN.2015.7280838","DOIUrl":null,"url":null,"abstract":"It has been shown that a Developmental Network (DN) can learn any Finite Automaton (FA) [29] but FA is not a general purpose automaton by itself. This theoretical paper presents that the controller of any Turing Machine (TM) is equivalent to an FA. It further models a motivation-free brain - excluding motivation e.g., emotions - as a TM inside a grounded DN - DN with the real world. Unlike a traditional TM, the TM-in-DN uses natural encoding of input and output and uses emergent internal representations. In Artificial Intelligence (AI) there are two major schools, symbolism and connectionism. The theoretical result here implies that the connectionist school is at least as powerful as the symbolic school also in terms of the general-purpose nature of TM. Furthermore, any TM simulated by the DN is grounded and uses natural encoding so that the DN autonomously learns any TM directly from natural world without a need for a human to encode its input and output. This opens the door for the DN to fully autonomously learn any TM, from a human teacher, reading a book, or real world events. The motivated version of DN [31] further enables a DN to go beyond action-supervised learning - so as to learn based on pain-avoidance, pleasure seeking, and novelty seeking [31].","PeriodicalId":6539,"journal":{"name":"2015 International Joint Conference on Neural Networks (IJCNN)","volume":"11 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Brains as naturally emerging turing machines\",\"authors\":\"J. Weng\",\"doi\":\"10.1109/IJCNN.2015.7280838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It has been shown that a Developmental Network (DN) can learn any Finite Automaton (FA) [29] but FA is not a general purpose automaton by itself. This theoretical paper presents that the controller of any Turing Machine (TM) is equivalent to an FA. It further models a motivation-free brain - excluding motivation e.g., emotions - as a TM inside a grounded DN - DN with the real world. Unlike a traditional TM, the TM-in-DN uses natural encoding of input and output and uses emergent internal representations. In Artificial Intelligence (AI) there are two major schools, symbolism and connectionism. The theoretical result here implies that the connectionist school is at least as powerful as the symbolic school also in terms of the general-purpose nature of TM. Furthermore, any TM simulated by the DN is grounded and uses natural encoding so that the DN autonomously learns any TM directly from natural world without a need for a human to encode its input and output. This opens the door for the DN to fully autonomously learn any TM, from a human teacher, reading a book, or real world events. The motivated version of DN [31] further enables a DN to go beyond action-supervised learning - so as to learn based on pain-avoidance, pleasure seeking, and novelty seeking [31].\",\"PeriodicalId\":6539,\"journal\":{\"name\":\"2015 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"11 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2015.7280838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2015.7280838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
It has been shown that a Developmental Network (DN) can learn any Finite Automaton (FA) [29] but FA is not a general purpose automaton by itself. This theoretical paper presents that the controller of any Turing Machine (TM) is equivalent to an FA. It further models a motivation-free brain - excluding motivation e.g., emotions - as a TM inside a grounded DN - DN with the real world. Unlike a traditional TM, the TM-in-DN uses natural encoding of input and output and uses emergent internal representations. In Artificial Intelligence (AI) there are two major schools, symbolism and connectionism. The theoretical result here implies that the connectionist school is at least as powerful as the symbolic school also in terms of the general-purpose nature of TM. Furthermore, any TM simulated by the DN is grounded and uses natural encoding so that the DN autonomously learns any TM directly from natural world without a need for a human to encode its input and output. This opens the door for the DN to fully autonomously learn any TM, from a human teacher, reading a book, or real world events. The motivated version of DN [31] further enables a DN to go beyond action-supervised learning - so as to learn based on pain-avoidance, pleasure seeking, and novelty seeking [31].