多次访问无人机的旅行推销员问题

Quang Minh Ha, Duy Manh Vu, Xuan Thanh Le, M. Hoang
{"title":"多次访问无人机的旅行推销员问题","authors":"Quang Minh Ha, Duy Manh Vu, Xuan Thanh Le, M. Hoang","doi":"10.15625/1813-9663/37/4/16180","DOIUrl":null,"url":null,"abstract":"This paper deals with the Traveling Salesman Problem with Multi-Visit Drone (TSP-MVD) in which a truck works in collaboration with a drone that can serve up to q > 1 customers consecutively during each sortie. We propose a Mixed Integer Linear Programming (MILP) formulation and a metaheuristic based on Iterated Local Search to solve the problem. Benchmark instances collected from the literature of the special case with q = 1 are used to test the performance of our algorithms. The obtained results show that our MILP model can solve a number of instances to optimality. This is the first time optimal solutions for these instances are reported. Our ILS performs better other algorithms in terms of both solution quality and running time on several class of instances. The numerical results obtained by testing the methods on new randomly generated instances show again the effectiveness of the methods as well as the positive impact of using the multi-visit drone.","PeriodicalId":15444,"journal":{"name":"Journal of Computer Science and Cybernetics","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"THE TRAVELING SALESMAN PROBLEM WITH MULTI-VISIT DRONE\",\"authors\":\"Quang Minh Ha, Duy Manh Vu, Xuan Thanh Le, M. Hoang\",\"doi\":\"10.15625/1813-9663/37/4/16180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the Traveling Salesman Problem with Multi-Visit Drone (TSP-MVD) in which a truck works in collaboration with a drone that can serve up to q > 1 customers consecutively during each sortie. We propose a Mixed Integer Linear Programming (MILP) formulation and a metaheuristic based on Iterated Local Search to solve the problem. Benchmark instances collected from the literature of the special case with q = 1 are used to test the performance of our algorithms. The obtained results show that our MILP model can solve a number of instances to optimality. This is the first time optimal solutions for these instances are reported. Our ILS performs better other algorithms in terms of both solution quality and running time on several class of instances. The numerical results obtained by testing the methods on new randomly generated instances show again the effectiveness of the methods as well as the positive impact of using the multi-visit drone.\",\"PeriodicalId\":15444,\"journal\":{\"name\":\"Journal of Computer Science and Cybernetics\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Science and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15625/1813-9663/37/4/16180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/1813-9663/37/4/16180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了具有多访问无人机的旅行推销员问题(TSP-MVD),其中一辆卡车与一架无人机协同工作,在每次出动期间可以连续服务多达q > 1个客户。我们提出了一个混合整数线性规划(MILP)公式和一个基于迭代局部搜索的元启发式方法来解决这个问题。从q = 1的特殊情况的文献中收集的基准实例用于测试我们的算法的性能。仿真结果表明,该模型可以解决多个实例的最优问题。这是首次报道这些实例的最优解决方案。在若干类实例上,我们的ILS在解决方案质量和运行时间方面的性能优于其他算法。在新的随机生成实例上对方法进行了数值测试,结果再次表明了方法的有效性以及使用多访问无人机的积极影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
THE TRAVELING SALESMAN PROBLEM WITH MULTI-VISIT DRONE
This paper deals with the Traveling Salesman Problem with Multi-Visit Drone (TSP-MVD) in which a truck works in collaboration with a drone that can serve up to q > 1 customers consecutively during each sortie. We propose a Mixed Integer Linear Programming (MILP) formulation and a metaheuristic based on Iterated Local Search to solve the problem. Benchmark instances collected from the literature of the special case with q = 1 are used to test the performance of our algorithms. The obtained results show that our MILP model can solve a number of instances to optimality. This is the first time optimal solutions for these instances are reported. Our ILS performs better other algorithms in terms of both solution quality and running time on several class of instances. The numerical results obtained by testing the methods on new randomly generated instances show again the effectiveness of the methods as well as the positive impact of using the multi-visit drone.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PROVING THE SECURITY OF AES BLOCK CIPHER BASED ON MODIFIED MIXCOLUMN AN IMPROVED INDEXING METHOD FOR QUERYING BIG XML FILES OHYEAH AT VLSP2022-EVJVQA CHALLENGE: A JOINTLY LANGUAGE-IMAGE MODEL FOR MULTILINGUAL VISUAL QUESTION ANSWERING THE VNPT-IT EMOTION TRANSPLANTATION APPROACH FOR VLSP 2022 TAEKWONDO POSE ESTIMATION WITH DEEP LEARNING ARCHITECTURES ON ONE-DIMENSIONAL AND TWO-DIMENSIONAL DATA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1