泡沫聚氨酯与石墨烯纳米板复合材料有效屏蔽电磁辐射

N. Memetov, A. Gerasimova, R. Stolyarov, A. Tkachev, A. Melezhik, N. Chapaksov, A. Osipkov, P. Mikhalev, A. Provatorov
{"title":"泡沫聚氨酯与石墨烯纳米板复合材料有效屏蔽电磁辐射","authors":"N. Memetov, A. Gerasimova, R. Stolyarov, A. Tkachev, A. Melezhik, N. Chapaksov, A. Osipkov, P. Mikhalev, A. Provatorov","doi":"10.17277/amt.2020.01.pp.068-073","DOIUrl":null,"url":null,"abstract":"Composite materials based on polyurethane foam and graphene nanoplates (GNP) for shielding from electromagnetic radiation in the frequency range from 2 to 12 GHz were made by impregnation. The use of phenol-formaldehyde resin (PFS) as a binder component promoted good adhesion of graphene to the polymer matrix and made it possible to obtain samples of composites with a high graphene concentration of ~ 50 wt %. An increase in the shielding efficiency of composites was found both with an increase in the frequency of electromagnetic radiation and with an increase in the concentration of GNP in them. The maximum shielding value was 75 dB at a frequency of 12 GHz and graphene concentration of 50 % by mass. It is concluded that the impregnation method proved to be promising for the manufacture of flexible and lightweight composite foams effective for shielding electromagnetic interference in the range from 2 to 12 GHz.","PeriodicalId":13355,"journal":{"name":"Image Journal of Advanced Materials and Technologies","volume":"74 1","pages":"068-073"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Composite Materials Based on Foam Polyurethane and Graphene Nanoplates Effectively Screening Electromagnetic Radiation\",\"authors\":\"N. Memetov, A. Gerasimova, R. Stolyarov, A. Tkachev, A. Melezhik, N. Chapaksov, A. Osipkov, P. Mikhalev, A. Provatorov\",\"doi\":\"10.17277/amt.2020.01.pp.068-073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Composite materials based on polyurethane foam and graphene nanoplates (GNP) for shielding from electromagnetic radiation in the frequency range from 2 to 12 GHz were made by impregnation. The use of phenol-formaldehyde resin (PFS) as a binder component promoted good adhesion of graphene to the polymer matrix and made it possible to obtain samples of composites with a high graphene concentration of ~ 50 wt %. An increase in the shielding efficiency of composites was found both with an increase in the frequency of electromagnetic radiation and with an increase in the concentration of GNP in them. The maximum shielding value was 75 dB at a frequency of 12 GHz and graphene concentration of 50 % by mass. It is concluded that the impregnation method proved to be promising for the manufacture of flexible and lightweight composite foams effective for shielding electromagnetic interference in the range from 2 to 12 GHz.\",\"PeriodicalId\":13355,\"journal\":{\"name\":\"Image Journal of Advanced Materials and Technologies\",\"volume\":\"74 1\",\"pages\":\"068-073\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Image Journal of Advanced Materials and Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17277/amt.2020.01.pp.068-073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image Journal of Advanced Materials and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17277/amt.2020.01.pp.068-073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用浸渍法制备了基于聚氨酯泡沫和石墨烯纳米片(GNP)的屏蔽2 ~ 12 GHz频率电磁辐射的复合材料。使用酚醛树脂(PFS)作为粘合剂组分,促进了石墨烯与聚合物基体的良好粘附,并使获得石墨烯浓度高达50%的复合材料样品成为可能。复合材料的屏蔽效率随着电磁辐射频率的增加和GNP浓度的增加而增加。在12 GHz频率和石墨烯质量浓度为50%时,最大屏蔽值为75 dB。结果表明,浸渍法制备柔性轻量化复合泡沫具有良好的屏蔽2 ~ 12 GHz电磁干扰性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Composite Materials Based on Foam Polyurethane and Graphene Nanoplates Effectively Screening Electromagnetic Radiation
Composite materials based on polyurethane foam and graphene nanoplates (GNP) for shielding from electromagnetic radiation in the frequency range from 2 to 12 GHz were made by impregnation. The use of phenol-formaldehyde resin (PFS) as a binder component promoted good adhesion of graphene to the polymer matrix and made it possible to obtain samples of composites with a high graphene concentration of ~ 50 wt %. An increase in the shielding efficiency of composites was found both with an increase in the frequency of electromagnetic radiation and with an increase in the concentration of GNP in them. The maximum shielding value was 75 dB at a frequency of 12 GHz and graphene concentration of 50 % by mass. It is concluded that the impregnation method proved to be promising for the manufacture of flexible and lightweight composite foams effective for shielding electromagnetic interference in the range from 2 to 12 GHz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The influence of ultrafine-grained structure on solid-state weldability and formability of precipitation-hardening nickel-based superalloys Mechanism and kinetics of separation of impurity particles with different densities in a rapid gravity flow of granular material Influence of dispersion medium on thermodynamic parameters of natural graphite exfoliation for manufacturing graphene-based suspensions Features of implementation options for the process of high-temperature activation of carbon material Galvanic synthesis of ZnO and ZnO(Al) coatings from dimethylsulfoxide electrolytic baths
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1