{"title":"同时检测汗液中多巴胺和葡萄糖的可穿戴贴片传感器","authors":"Yue Sun, Junjie Ma, Yuwei Wang, Sen Qiao, Yihao Feng, Zhanhong Li, Zifeng Wang, Yutong Han, Zhigang Zhu","doi":"10.3390/analytica4020014","DOIUrl":null,"url":null,"abstract":"Achieving quantification of biomarkers in body fluids is crucial to the indication of the state of a person’s body and health. Wearable sensors could offer a convenient, fast and painless sensing strategy. In this work, we fabricated a wearable electrochemical patch sensor for simultaneous detection of dopamine and glucose in sweat. The sensor was printed on a flexible PDMS substrate with a simple screen-printed method. This prepared four-electrode sensor integrated two working electrodes for dopamine and glucose electrochemical sensing, one Ag/AgCl reference electrode and one carbon counter electrode, respectively. Cyclic voltammetry, differential pulse voltammetry and chronoamperometry were used for the evaluation of the wearable electrochemical patch sensor. It exhibits good sensitivity, wide linear range, low limit of detection, good anti-interference and reproducibility toward dopamine and glucose sensing in PBS and sweat.","PeriodicalId":7829,"journal":{"name":"Analytica","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Wearable Patch Sensor for Simultaneous Detection of Dopamine and Glucose in Sweat\",\"authors\":\"Yue Sun, Junjie Ma, Yuwei Wang, Sen Qiao, Yihao Feng, Zhanhong Li, Zifeng Wang, Yutong Han, Zhigang Zhu\",\"doi\":\"10.3390/analytica4020014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Achieving quantification of biomarkers in body fluids is crucial to the indication of the state of a person’s body and health. Wearable sensors could offer a convenient, fast and painless sensing strategy. In this work, we fabricated a wearable electrochemical patch sensor for simultaneous detection of dopamine and glucose in sweat. The sensor was printed on a flexible PDMS substrate with a simple screen-printed method. This prepared four-electrode sensor integrated two working electrodes for dopamine and glucose electrochemical sensing, one Ag/AgCl reference electrode and one carbon counter electrode, respectively. Cyclic voltammetry, differential pulse voltammetry and chronoamperometry were used for the evaluation of the wearable electrochemical patch sensor. It exhibits good sensitivity, wide linear range, low limit of detection, good anti-interference and reproducibility toward dopamine and glucose sensing in PBS and sweat.\",\"PeriodicalId\":7829,\"journal\":{\"name\":\"Analytica\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/analytica4020014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/analytica4020014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Wearable Patch Sensor for Simultaneous Detection of Dopamine and Glucose in Sweat
Achieving quantification of biomarkers in body fluids is crucial to the indication of the state of a person’s body and health. Wearable sensors could offer a convenient, fast and painless sensing strategy. In this work, we fabricated a wearable electrochemical patch sensor for simultaneous detection of dopamine and glucose in sweat. The sensor was printed on a flexible PDMS substrate with a simple screen-printed method. This prepared four-electrode sensor integrated two working electrodes for dopamine and glucose electrochemical sensing, one Ag/AgCl reference electrode and one carbon counter electrode, respectively. Cyclic voltammetry, differential pulse voltammetry and chronoamperometry were used for the evaluation of the wearable electrochemical patch sensor. It exhibits good sensitivity, wide linear range, low limit of detection, good anti-interference and reproducibility toward dopamine and glucose sensing in PBS and sweat.