车辆网络中的联合切换算法研究

Q4 Engineering 工程设计学报 Pub Date : 2016-04-18 DOI:10.1155/2016/3190264
Yuming Bi, Lei Tian, Mengmeng Liu, Zhenzi Liu, Wei Chen
{"title":"车辆网络中的联合切换算法研究","authors":"Yuming Bi, Lei Tian, Mengmeng Liu, Zhenzi Liu, Wei Chen","doi":"10.1155/2016/3190264","DOIUrl":null,"url":null,"abstract":"With the communication services evolution from the fourth generation (4G) to the fifth generation (5G), we are going to face diverse challenges from the new network systems. On the one hand, seamless handoff is expected to integrate universal access among various network mechanisms. On the other hand, a variety of 5G technologies will complement each other to provide ubiquitous high speed wireless connectivity. Because the current wireless network cannot support the handoff among Wireless Access for Vehicular Environment (WAVE), WiMAX, and LTE flexibly, the paper provides an advanced handoff algorithm to solve this problem. Firstly, the received signal strength is classified, and the vehicle speed and data rate under different channel conditions are optimized. Then, the optimal network is selected for handoff. Simulation results show that the proposed algorithm can well adapt to high speed environment, guarantee flexible and reasonable vehicles access to a variety of networks, and prevent ping-pong handoff and link access failure effectively.","PeriodicalId":31263,"journal":{"name":"工程设计学报","volume":"28 10 1","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Research on Joint Handoff Algorithm in Vehicles Networks\",\"authors\":\"Yuming Bi, Lei Tian, Mengmeng Liu, Zhenzi Liu, Wei Chen\",\"doi\":\"10.1155/2016/3190264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the communication services evolution from the fourth generation (4G) to the fifth generation (5G), we are going to face diverse challenges from the new network systems. On the one hand, seamless handoff is expected to integrate universal access among various network mechanisms. On the other hand, a variety of 5G technologies will complement each other to provide ubiquitous high speed wireless connectivity. Because the current wireless network cannot support the handoff among Wireless Access for Vehicular Environment (WAVE), WiMAX, and LTE flexibly, the paper provides an advanced handoff algorithm to solve this problem. Firstly, the received signal strength is classified, and the vehicle speed and data rate under different channel conditions are optimized. Then, the optimal network is selected for handoff. Simulation results show that the proposed algorithm can well adapt to high speed environment, guarantee flexible and reasonable vehicles access to a variety of networks, and prevent ping-pong handoff and link access failure effectively.\",\"PeriodicalId\":31263,\"journal\":{\"name\":\"工程设计学报\",\"volume\":\"28 10 1\",\"pages\":\"1-10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"工程设计学报\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.1155/2016/3190264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"工程设计学报","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1155/2016/3190264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3

摘要

随着通信业务从第四代(4G)向第五代(5G)演进,我们将面临来自新网络系统的各种挑战。一方面,无缝切换有望整合各种网络机制之间的通用接入。另一方面,各种5G技术将相互补充,提供无处不在的高速无线连接。针对当前无线网络无法灵活支持WAVE、WiMAX和LTE之间的切换,提出了一种先进的切换算法来解决这一问题。首先对接收到的信号强度进行分类,优化不同信道条件下的车速和数据速率;然后,选择最优网络进行切换。仿真结果表明,该算法能很好地适应高速环境,保证车辆灵活合理地接入各种网络,有效防止乒乓切换和链路接入故障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on Joint Handoff Algorithm in Vehicles Networks
With the communication services evolution from the fourth generation (4G) to the fifth generation (5G), we are going to face diverse challenges from the new network systems. On the one hand, seamless handoff is expected to integrate universal access among various network mechanisms. On the other hand, a variety of 5G technologies will complement each other to provide ubiquitous high speed wireless connectivity. Because the current wireless network cannot support the handoff among Wireless Access for Vehicular Environment (WAVE), WiMAX, and LTE flexibly, the paper provides an advanced handoff algorithm to solve this problem. Firstly, the received signal strength is classified, and the vehicle speed and data rate under different channel conditions are optimized. Then, the optimal network is selected for handoff. Simulation results show that the proposed algorithm can well adapt to high speed environment, guarantee flexible and reasonable vehicles access to a variety of networks, and prevent ping-pong handoff and link access failure effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
工程设计学报
工程设计学报 Engineering-Engineering (miscellaneous)
CiteScore
0.60
自引率
0.00%
发文量
2447
审稿时长
14 weeks
期刊介绍: Chinese Journal of Engineering Design is a reputable journal published by Zhejiang University Press Co., Ltd. It was founded in December, 1994 as the first internationally cooperative journal in the area of engineering design research. Administrated by the Ministry of Education of China, it is sponsored by both Zhejiang University and Chinese Society of Mechanical Engineering. Zhejiang University Press Co., Ltd. is fully responsible for its bimonthly domestic and oversea publication. Its page is in A4 size. This journal is devoted to reporting most up-to-date achievements of engineering design researches and therefore, to promote the communications of academic researches and their applications to industry. Achievments of great creativity and practicablity are extraordinarily desirable. Aiming at supplying designers, developers and researchers of diversified technical artifacts with valuable references, its content covers all aspects of design theory and methodology, as well as its enabling environment, for instance, creative design, concurrent design, conceptual design, intelligent design, web-based design, reverse engineering design, industrial design, design optimization, tribology, design by biological analogy, virtual reality in design, structural analysis and design, design knowledge representation, design knowledge management, design decision-making systems, etc.
期刊最新文献
Innovative design of box elevator epidemic prevention function integrating AD and TRIZ Discrete element simulation for evolution characteristics of multi-funnel mineral-rock force chain under flexible isolation layer Application progress of artificial intelligence in military confrontation Cloud storage data integrity audit based on an index–stub table Clinical named entity recognition from Chinese electronic medical records using a double-layer annotation model combining a domain dictionary with CRF
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1