I. Y. Mittova, B. V. Sladkopevtsev, V. Mittova, Anh Tien Nguyen, Evgenia I. Kopeychenko, Natalia V. Khoroshikh, Irina A. Varnachkina
{"title":"ФОРМИРОВАНИЕ ПЛЕНОК СИСТЕМЫ (Y2O3-Fe2O3) НАНОРАЗМЕРНОГО ДИАПАЗОНА ТОЛЩИНЫ НА МОНОКРИСТАЛЛИЧЕСКОМ InP","authors":"I. Y. Mittova, B. V. Sladkopevtsev, V. Mittova, Anh Tien Nguyen, Evgenia I. Kopeychenko, Natalia V. Khoroshikh, Irina A. Varnachkina","doi":"10.17308/kcmf.2019.21/1156","DOIUrl":null,"url":null,"abstract":"Методом центрифугирования сформированы пленки наноразмерного диапазона толщины (лазерная, спектральная эллипсометрия) системы Y2O3–Fe2O3 на монокристаллическом InP из нитратного раствора. Состав пленок, выращенных без отжига - YFe2O4; отожженных термически при 200 °С – YFe2O4, Fe2O3 с примесью Fe3O4; прошедших импульсную фотонную обработку (50 Дж/см2, 0.4 с) и термооксидирование (450–550 °С, время 10–60 мин) – YFe2O4 и YFeO3. Отжиг с последующим термооксидированием способствует уменьшению размера зерен на поверхности выращенной пленки, но увеличивает среднюю шероховатость. Импульсная фотонная обработка обусловливает повышенную неровность поверхности гетероструктуры. \n \n \nИСТОЧНИК ФИНАНСИРОВАНИЯРабота выполнена при поддержке грантаРФФИ №18-03-00354 а. \n \n \n \nREFERENCES \n \nZvezdin A. K., Logginov A. S., Meshkov G. A., Pyatakov A. P. Multiferroics: Promising materials for microelectronics, spintronics, and sensor technique. Bulletin of the Russian Academy of Sciences: Physics, 2007, v. 71(11), pp. 1561−1562. https://doi.org/10.3103/S1062873807110263 \nFahlman B. Materials Chemistry. Springer Netherlands, 2011, 736 p. DOI: 10.1007/978-94-007-0693-4 \nGubin S. P., Koksharov Yu. A., Khomutov G. B., Yurkov G. Yu. Magnetic nanoparticles: preparation, structure and properties. Russian Chemical Reviews, 2005, v. 74 (6), pp. 489–520. https://doi.org/10.1070/RC2005v074n06ABEH000897 \nShabanova N. A., Popov V. V., Sarkisov P. D. Khimiya i tekhnologiya nanodispersnykh oksidov [Chemistry and technology of nanodispersed oxides]. M.: IKC Akademkniga Publ., 2007, 309 p. (in Russ.). \nLima H. R. B. R., Nascimento D. S., Sussuchi E. M., Errico F. D., Souza S. O. Synthesis of MgB4O7 and Li2B4O7 crystals by proteic sol-gel and Pechini methods. Journal of Sol-gel Science and Technology, 2017, v. 81(3), pp. 797−805. https://doi.org/10.1007/s10971-016-4249-z \nSerrao C. R., Sahu J. R., Athinarayanan S., Rao C. N. R. Magnetoelectric effect in rare earth ferrites, LnFe2O4. Journal of Applied Physics, 2008, v. 104(1), p. 16102. https://doi.org/10.1063/1.2946455 \nXu C., Yang Y., Wang S., Duan W., Gu B., Bellaiche L. Anomalous properties of hexagonal rare-earth ferrites from fi rst principles. Physical Review B, 2014, v. 89(20), p. 205122. https://doi.org/10.1103/Phys-RevB.89.205122 \nMahalakshmi S., SrinivasaManja K., Nithiyanantham S. Electrical properties of nanophase ferrites doped with rare earth ions. Journal of Superconductivity and Novel Magnetism, 2014, v. 27(9), pp. 2083–2088. https://doi.org/10.1007/s10948-014-2551-y \nSanchez-Andujar M., Mira J., Rivas J. Enhanced magnetoresistance in the ruddlesden−popper compound Sr3Fe1.5Co0.5O6.67. Journal of Magnetism and Magnetic Material, 2003, v. 263(3), pp. 282−288. https://doi.org/10.1016/S0304-8853(02)01576-7 \nKhomskii D. I. Multiferroics: Different ways to combine magnetism and ferroelectricity. Journal of Magnetism and Magnetic Material, 2006, v. 306(1), pp. 1−8. https://doi.org/10.1016/j.jmmm.2006.01.238 \nPatel R., Simon C., Weller M. LnSrScO4 (Ln = La, Ce, Pr, Nd and Sm) systems and structure correlations for A2BO4 (K2NiF4) structure types. Journal of Solid State Chemistry, 2007, v. 180, pp. 349−359. https://doi.org/10.1134/S0036023615100162 \nPopkov V. I., Almjasheva O. V., Schmidt M. P., Gusarov V. V. Formation mechanism of nanocrystalline yttrium orthoferrite under heat treatment of the coprecipitated hydroxides. Russian Journal of General Chemistry, 2015, v. 85(6), pp. 1370−1375. https://doi.org/10.1134/S0036023615100162 \nPopkov V. I., Izotova S. G., Almjasheva O. V., Schmidt M. P., Gusarov V. V. Features of nanosized YFeO3 formation under heat treatment of glycinenitrate combustion products. Russian Journal of Inorganic Chemistry, 2015, v. 60(10), pp. 1193−1198. https://doi.org/10.1134/S0036023615100162 \nChithralekha P., Murugeswari C., Ramachandran K., Srinivasan R. The study on ultrasonic velocities of CoxFe3-xO4 nanoferrofl uid prepared by co-precipitation method. Nanosystems: Physics, Chemistry, Mathematics, 2016, v. 7(3), pp. 558–560. https://doi.org/10.17586/2220-8054-2016-7-3-558-560 \nNguyen A. T., Phan Ph. Nh, Mittova I. Ya., Knurorova M. V., Mittova V. O. The characterization of nanosized ZnFe2O4 material prepared by coprecipitation. Nanosystems: Physics, Chemistry, Mathematics, 2016, v. 7(3), pp. 459–463. https://doi.org/10.17586/2220-8054-2016-7-3-459-463 \nLomanova N. A., Ugolkov V. L., Gusarov V. V. Thermal behavior of layered perovskite-like compounds in the Bi4Ti3O12-BiFeO3 system. Glass Physics and Chemistry, 2007, v. 33(6), pp. 608−612. https://doi.org/10.1134/S1087659607060120 \nNguyen A. T., Almjasheva O. V., Mittova I. Ya., Stognei O. V., Soldatenko S. A. Synthesis and magnetic properties of YFeO3 nanocrystals. Inorganic Materials, 2009, v. 45(11), pp. 1392–1397. https://doi.org/10.1134/S002016850 \nPerrot P. Iron–Oxygen–Yttrium. Ternary Alloy Systems, 2009, v. 11(5), pp. 1–18. https://doi.org/10.1007/978-3-540-70890-2_23 \nShiwani Sharma, Saravanan P., Pandey O. P, Vinod V. T. P., Cernic M., Sharma P. Magnetic behaviour of sol–gel driven BiFeO3 thin fi lms with different grain size distribution. Journal of Magnetism and Magnetic Materials, 2016, v. 401, pp. 180–187. https://doi.org/10.1016/j.jmmm.2015.10.035 \nNikitin M. P., Vetoshko P. M., Nikitin P. I., Bnjsentsov N. A. Highly sensitive room temperature method of non-invasive in vivo Detection of magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 2009, v. 321. pp. 1658−1661. https://doi.org/10.1016/j.jmmm.2009.02.108 \nVetoshko P., Skidanov V., Stempkovskiy A. Magnetization distribution near edge of YIG fi lm core in fluxgate magnetometer. Sensor Letters, 2013, v. 11(1), 59−61. https://doi.org/10.1166/sl.2013.2768 \nBerezhnaya M. V., Mittova I. Y., Viryutina E. L., Perov N. S., Bessalova V. V., Al’myasheva O. V., Nguyen A. T., Mittova V. O. Production of zinc-doped yttrium ferrite nanopowders by the sol–gel method. Russian Journal of Inorganic Chemistry, 2018, v. 63(6), pp. 742−746. https://doi.org/10.1134/S0036023618060049 \nBerezhnaya M. V., Perov N. S., Almjasheva O. V., Mittova V. O, Nguyen A. T., Mittova I. Ya., Druzhinina L. V., Alekhina Yu. A. Synthesis and magnetic properties of barium-doped nanocrystal lanthanum orthoferrite. Russian Journal of General Chemistry, 2018, v. 89(3), pp. 480−485. https://doi.org/10.1134/S1070363219030198 \nNguyen A. T., Pham Vinh N. T., Nguyen T. Tr. L., Mittova V. O., Vo Q. M., Berezhnaya M. V., Mittova I. Ya., Do Tr. H., Chau H. D. Crystal structure and magnetic properties of perovskite YFe1–xMnxO3 nanopowders synthesized by co-precipitation method. Solid State Sciences, 2019, v. 96, p. 105922. https://doi.org/10.1016/j.solidstatesciences.2019.06.011 \nNguyen А. Т., Berezhnay M. V., Pham T. L., Mittova V. O., Vo Q. M., Nguyen T. Tr. L., Do Tr. H., Mittova I. Ya., Viryutina E. L. Synthesis and magnetic characteristics of neodymium ferrite powders with perovskite structure. Russian Journal of Applied Chemistry, 2019, v. 92(4), pp. 498−504. https://doi.org/S1070427219040050 \nMilyaeva I. A., Perov N. S., Bessalova V. V., Berezhnaya М. V., Mittova V. О., Nguyen A. T., Mittova I. Ya. Synthesis and properties of nanoscale fi lms of the Y2O3–Fe2O3 system on silicon. Nanosystems: physics, chemistry, mathematics, 2018, v. 9(3), pp. 417–423. https://doi.org/10.17586/2220-8054-2018-9-3-417-423 \nIevlev V. M. Aktivatsiya tverdofaznykh protsessov izlucheniyem gazorazryadnykh lamp [Activation of solid-phase processes by radiation of gas-discharge lamps]. Russian Chemical Reviews, 2013, v. 82(9), pp. 815−834. https://doi.org/10.1070/RC2013v082n09ABEH004357 \nJCPDC PCPDFWIN: A Windows Retrieval/Display program for Accessing the ICDD PDF – 2 Data base, International Centre for Diffraction Data, 1997. \nMonina L. N. Rentgenografi ya. Kachestvennyy rentgenofazovyy analiz [Roentgenography qualitative X-ray phase analysis], M.: Prospect Publ., 2017, 130 p. (in Russ.). \nTretyakov N. N., Mittova I. Y., Sladkopevtsev B. V., Samsonov A. A., Andreenko S. Y. Effect of a magnetron-sputtered MnO2 layer on the thermal oxidation kinetics of InP and the composition and morphology of the resultant fi lms. Inorganic Materials, 2017, v. 53(1), pp. 65−71. https://doi.org/10.1134/S0020168517010174 \n \n ","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17308/kcmf.2019.21/1156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
离心机是由纳米厚度(激光、光谱椭圆)系统Y2O3 - Fe2O3的胶片组成的。无退火- YFe2O4胶片的组成;黄在200°c下热处理和杂质Fe3O4 YFe2O4 Fe2O3;过去脉冲光子加工(50 g / cm, 0.4)和термооксидирован(450 - 550°s,时间10 - 60 min) YFe2O4、YFeO3。随后的热氧化物退火会减少胶片表面谷物的大小,但会增加平均粗糙度。脉冲光子处理导致异质结构表面的不稳定性增加。来源финансированияработгрантарфф的支持下执行№18 - 03 - 00354而参照”Zvezdin Logginov·A·S·A·K。,Pyatakov Meshkov g . A . A . p . Multiferroics: Promising材料for微电子、spintronics and sensor technique。俄罗斯科学学院:物理,2007年,v71 (11), pp, 1561 1562。b https://doi.org/10.3103/S1062873807110263 Fahlman材料Chemistry》。2011年,施普林格·尼瑟兰兹,736 p。A, Khomutov G. B, Yurkov G. Yu。Magnetic nanoptiicles: preparation、structure和properties。俄罗斯化学评论,2005年,v74 (6), pp, 489 - 520。https://doi.org/10.1070/RC2005v074n06ABEH000897 Shabanova n . A . Popov V V, i tekhnologiya Sarkisov p . d . Khimiya nanodispersnykh oksidov [Chemistry》and technology of nanodispersed oxides]。M: IKC Akademkniga Publ。2007年309 p利玛·h·b·R, Nascimento D,苏塞奇·e·M,埃利科·f·D, MgB4O7的合成器,和proteic sol-gel和Pechini methods的合成器。《Sol-gel科学与技术杂志》,2017年,v81 (3), pp, 797 805。https://doi.org/10.1007/s10971-016-4249-z Serrao c . Sahu j R R。,Athinarayanan S。拉奥c . n . R . Magnetoelectric effect in rare earth ferrites LnFe2O4。附录物理杂志,2008年,v104 (1), p, 16102。C https://doi.org/10.1063/1.2946455许志永。杨Y。Wang S Duan W。B Gu, Bellaiche l . (Anomalous of hexagonal rare earth ferrites from fi挣principles)。物理评论B, 2014年,v89, 20, p, 205122。https://doi.org/10.1103/Phys-RevB.89.205122 Mahalakshmi S SrinivasaManja K。Nithiyanantham S . (electric of nanophase ferrites doped with rare earth ions。Superconductivity和Novel Magnetism, 2014年,v27 (9), pp, 2083 - 2088。https://doi.org/10.1007/s10948-014-2551-y Sanchez - Andujar M。米拉J, J Rivas Enhanced magnetoresistance in the ruddlesden−popper compound Sr3Fe1.5Co0.5O6.67。2003年,v263 (3), pp, 282 288。https://doi.org/10.1016/S0304-8853 (02) 01576 - 7 Khomskii d .一世Multiferroics: Different ways to因为animal磁力and ferroelectricity。2006年,v.306 (1), pp, 1 8。https://doi.org/10.1016/j.jmmm.2006.01.238素材Weller, Simon C R。m . LnSrScO4 (Ln = La Ce, Pr, Sm) Nd and systems and correlations for A2BO4 (K2NiF4结构types)。《独奏状态杂志》,2007年,v180, pp, 349 - 359。https://doi.org/10.1134/S0036023615100162 Popkov V . I、Almjasheva o . V。,Gusarov Schmidt m . P . V . V .组机制of nanocrystalline yttrium orthoferrite under heat treatment of the coprecipitated hydroxides。俄罗斯通用化学杂志,2015年,v85 (6), pp, 1370 1375。https://doi.org/10.1134/S0036023615100162 Popkov V I Izotova s . G。Almjasheva o . V, Schmidt m . P . Gusarov诉诉Features of nanosized YFeO3组under heat treatment of glycinenitrate combustion products。俄罗斯科学杂志,2015年,v60 (10), pp, 1193 1198。https://doi.org/10.1134/S0036023615100162 Chithralekha P ., C Murugeswari。Ramachandran K。Srinivasan r . The研究on ultrasonic velocities of CoxFe3 - xO4 nanoferrofl uid prepared by co - precipitation method。Nanosystems:物理,化学,数学,2016年,v7 (3), pp, 558 - 560。https://doi.org/10.17586/2220-8054-2016-7-3-558-560阮a . T . Phan Ph. Nh Mittova一世Ya。这是Knurorova mv, Mittova V, Mittova V。Nanosystems:物理,化学,数学,2016年,v7 (3), pp, 459 - 463。https://doi.org/10.17586/2220-8054-2016-7-3-459-463 Lomanova n . A . Ugolkov v . L, Gusarov诉诉热behavior of layered perovskite - like compounds in the Bi4Ti3O12 BiFeO3 system。Glass物理和化学,2007年,v33 (6), pp, 608 - 612。https://doi.org/10.1134/S1087659607060120阮·a·T。Almjasheva o . V, Mittova一世Ya。Stognei ov, Soldatenko S. Synthesis和巨大的nanocrystals专业人士。组织物质,2009年,v45 (11), pp, 1392 - 1397。铁——itunes Yttrium https://doi.org/10.1134/S002016850 Perrot p。Ternary Alloy系统,2009年,v11 (5), pp, 1 - 18。https://doi.org/10.1007/978-3-540-70890-2_23 Shiwani中,Saravanan P . Pandey o . P,沙马v . t . P。 ,陈志强,陈志强,等。溶胶-凝胶驱动BiFeO3薄膜的磁性行为。磁性与磁性材料学报,2016,v. 401, pp. 180-187。https://doi.org/10.1016/j.jmmm.2015.10.035 Nikitin M. P., Vetoshko P. M., Nikitin P. I., Bnjsentsov N. A.高灵敏度室温下无创体内磁性纳米颗粒检测方法。磁学与磁性材料学报,2009,(5):391 - 391。1658−1661页。https://doi.org/10.1016/j.jmmm.2009.02.108 Vetoshko P., Skidanov V., Stempkovskiy A.磁通门磁强计YIG膜磁芯近边缘磁化分布。传感器学报,2013,vol . 11(1), 59−61。https://doi.org/10.1166/sl.2013.2768 Berezhnaya M. V., Mittova I. Y., Viryutina E. L., Perov N. S., Bessalova V. V., Al 'myasheva O. V., Nguyen A. T., Mittova V.。溶胶-凝胶法制备掺锌铁酸钇纳米粉体。无机化学学报,2018,v. 63(6), pp. 742 - 746。https://doi.org/10.1134/S0036023618060049别列兹纳亚M. V,佩罗夫N. S.,阿尔姆贾什娃O. V.,米托娃V. O,阮A. T,米托娃I. Ya。,德鲁日尼娜L. V.,余阿列希娜。A.掺钡纳米晶镧正铁氧体的合成及磁性能。俄罗斯普通化学杂志,2018,v. 89(3), pp. 480−485。https://doi.org/10.1134/S1070363219030198阮爱涛,范永南,阮道良,Mittova v.o, Vo Q. M, Berezhnaya M. V, Mittova I. Ya。,周洪东。共沉淀法合成钙钛矿YFe1-xMnxO3纳米粉体的晶体结构和磁性能。固体科学,2019,v. 96, p. 105922。https://doi.org/10.1016/j.solidstatesciences.2019.06.011 Nguyen А。Т。, Berezhnay m.v, Pham T. L, Mittova V. O, Vo Q. M, Nguyen T. Tr. L, Do Tr. H, Mittova I. Ya。钙钛矿结构铁酸钕粉体的合成及磁性研究。应用化学学报,2019,v. 92(4), pp. 498−504。https://doi.org/S1070427219040050米耶耶娃,佩罗夫,别列日纳亚М。V.,米托娃V. О。, Nguyen A. T., Mittova I. Ya。硅基Y2O3-Fe2O3纳米膜的合成及性能研究。纳米系统:物理,化学,数学,2018,v. 9(3), pp. 417-423。https://doi.org/10.17586/2220-8054-2018-9-3-417-423 Ievlev V. M. Aktivatsiya tverdofaznykh protsessov izlucheniyem gazorazryadnykh灯[气体放电灯辐射激活固相过程]。俄罗斯化学评论,2013,v. 82(9), pp. 815 - 834。https://doi.org/10.1070/RC2013v082n09ABEH004357 JCPDC PCPDFWIN:访问ICDD PDF - 2数据库的Windows检索/显示程序,国际衍射数据中心,1997。莫尼娜·l·n·伦琴格拉菲亚。[x线造影定性x射线相分析],中华人民大学学报(英文版);, 2017, 130页(俄文)。李建军,李建军,李建军,李建军,等。磁控溅射MnO2层对镍磷热氧化动力学的影响及膜的组成和形貌。无机材料,2017,v. 53(1), pp. 65 - 71。https://doi.org/10.1134/S0020168517010174 ,陈志强,陈志强,等。溶胶-凝胶驱动BiFeO3薄膜的磁性行为。磁性与磁性材料学报,2016,v. 401, pp. 180-187。https://doi.org/10.1016/j.jmmm.2015.10.035 Nikitin M. P., Vetoshko P. M., Nikitin P. I., Bnjsentsov N. A.高灵敏度室温下无创体内磁性纳米颗粒检测方法。磁学与磁性材料学报,2009,(5):391 - 391。1658−1661页。https://doi.org/10.1016/j.jmmm.2009.02.108 Vetoshko P., Skidanov V., Stempkovskiy A.磁通门磁强计YIG膜磁芯近边缘磁化分布。传感器学报,2013,vol . 11(1), 59−61。https://doi.org/10.1166/sl.2013.2768 Berezhnaya M. V., Mittova I. Y., Viryutina E. L., Perov N. S., Bessalova V. V., Al 'myasheva O. V., Nguyen A. T., Mittova V.。溶胶-凝胶法制备掺锌铁酸钇纳米粉体。无机化学学报,2018,v. 63(6), pp. 742 - 746。https://doi.org/10.1134/S0036023618060049别列兹纳亚M. V,佩罗夫N. S.,阿尔姆贾什娃O. V.,米托娃V. O,阮A. T,米托娃I. Ya。,德鲁日尼娜L. V.,余阿列希娜。A.掺钡纳米晶镧正铁氧体的合成及磁性能。俄罗斯普通化学杂志,2018,v. 89(3), pp. 480−485。https://doi.org/10.1134/S1070363219030198阮爱涛,范永南,阮道良,Mittova v.o, Vo Q. M, Berezhnaya M. V, Mittova I. Ya。,周洪东。共沉淀法合成钙钛矿YFe1-xMnxO3纳米粉体的晶体结构和磁性能。固体科学,2019,v. 96, p. 105922。https://doi.org/10.1016/j.solidstatesciences.2019.06.011 Nguyen А。Т。, Berezhnay m.v, Pham T. L, Mittova V. O, Vo Q. M, Nguyen T. Tr. L, Do Tr. H, Mittova I. Ya。钙钛矿结构铁酸钕粉体的合成及磁性研究。应用化学学报,2019,v. 92(4), pp. 498−504。https://doi.org/S1070427219040050米耶耶娃,佩罗夫,别列日纳亚М。V.,米托娃V. О。, Nguyen A. T., Mittova I. Ya。硅基Y2O3-Fe2O3纳米膜的合成及性能研究。纳米系统:物理,化学,数学,2018,v. 9(3), pp. 417-423。https://doi.org/10.17586/2220-8054-2018-9-3-417-423 Ievlev V. M. Aktivatsiya tverdofaznykh protsessov izlucheniyem gazorazryadnykh灯[气体放电灯辐射激活固相过程]。俄罗斯化学评论,2013,v. 82(9), pp. 815 - 834。https://doi.org/10.1070/RC2013v082n09ABEH004357 JCPDC PCPDFWIN:访问ICDD PDF - 2数据库的Windows检索/显示程序,国际衍射数据中心,1997。莫尼娜·l·n·伦琴格拉菲亚。[x线造影定性x射线相分析],中华人民大学学报(英文版);, 2017, 130页(俄文)。李建军,李建军,李建军,李建军,等。磁控溅射MnO2层对镍磷热氧化动力学的影响及膜的组成和形貌。无机材料,2017,v. 53(1), pp. 65 - 71。https://doi.org/10.1134/S0020168517010174
ФОРМИРОВАНИЕ ПЛЕНОК СИСТЕМЫ (Y2O3-Fe2O3) НАНОРАЗМЕРНОГО ДИАПАЗОНА ТОЛЩИНЫ НА МОНОКРИСТАЛЛИЧЕСКОМ InP
Методом центрифугирования сформированы пленки наноразмерного диапазона толщины (лазерная, спектральная эллипсометрия) системы Y2O3–Fe2O3 на монокристаллическом InP из нитратного раствора. Состав пленок, выращенных без отжига - YFe2O4; отожженных термически при 200 °С – YFe2O4, Fe2O3 с примесью Fe3O4; прошедших импульсную фотонную обработку (50 Дж/см2, 0.4 с) и термооксидирование (450–550 °С, время 10–60 мин) – YFe2O4 и YFeO3. Отжиг с последующим термооксидированием способствует уменьшению размера зерен на поверхности выращенной пленки, но увеличивает среднюю шероховатость. Импульсная фотонная обработка обусловливает повышенную неровность поверхности гетероструктуры.
ИСТОЧНИК ФИНАНСИРОВАНИЯРабота выполнена при поддержке грантаРФФИ №18-03-00354 а.
REFERENCES
Zvezdin A. K., Logginov A. S., Meshkov G. A., Pyatakov A. P. Multiferroics: Promising materials for microelectronics, spintronics, and sensor technique. Bulletin of the Russian Academy of Sciences: Physics, 2007, v. 71(11), pp. 1561−1562. https://doi.org/10.3103/S1062873807110263
Fahlman B. Materials Chemistry. Springer Netherlands, 2011, 736 p. DOI: 10.1007/978-94-007-0693-4
Gubin S. P., Koksharov Yu. A., Khomutov G. B., Yurkov G. Yu. Magnetic nanoparticles: preparation, structure and properties. Russian Chemical Reviews, 2005, v. 74 (6), pp. 489–520. https://doi.org/10.1070/RC2005v074n06ABEH000897
Shabanova N. A., Popov V. V., Sarkisov P. D. Khimiya i tekhnologiya nanodispersnykh oksidov [Chemistry and technology of nanodispersed oxides]. M.: IKC Akademkniga Publ., 2007, 309 p. (in Russ.).
Lima H. R. B. R., Nascimento D. S., Sussuchi E. M., Errico F. D., Souza S. O. Synthesis of MgB4O7 and Li2B4O7 crystals by proteic sol-gel and Pechini methods. Journal of Sol-gel Science and Technology, 2017, v. 81(3), pp. 797−805. https://doi.org/10.1007/s10971-016-4249-z
Serrao C. R., Sahu J. R., Athinarayanan S., Rao C. N. R. Magnetoelectric effect in rare earth ferrites, LnFe2O4. Journal of Applied Physics, 2008, v. 104(1), p. 16102. https://doi.org/10.1063/1.2946455
Xu C., Yang Y., Wang S., Duan W., Gu B., Bellaiche L. Anomalous properties of hexagonal rare-earth ferrites from fi rst principles. Physical Review B, 2014, v. 89(20), p. 205122. https://doi.org/10.1103/Phys-RevB.89.205122
Mahalakshmi S., SrinivasaManja K., Nithiyanantham S. Electrical properties of nanophase ferrites doped with rare earth ions. Journal of Superconductivity and Novel Magnetism, 2014, v. 27(9), pp. 2083–2088. https://doi.org/10.1007/s10948-014-2551-y
Sanchez-Andujar M., Mira J., Rivas J. Enhanced magnetoresistance in the ruddlesden−popper compound Sr3Fe1.5Co0.5O6.67. Journal of Magnetism and Magnetic Material, 2003, v. 263(3), pp. 282−288. https://doi.org/10.1016/S0304-8853(02)01576-7
Khomskii D. I. Multiferroics: Different ways to combine magnetism and ferroelectricity. Journal of Magnetism and Magnetic Material, 2006, v. 306(1), pp. 1−8. https://doi.org/10.1016/j.jmmm.2006.01.238
Patel R., Simon C., Weller M. LnSrScO4 (Ln = La, Ce, Pr, Nd and Sm) systems and structure correlations for A2BO4 (K2NiF4) structure types. Journal of Solid State Chemistry, 2007, v. 180, pp. 349−359. https://doi.org/10.1134/S0036023615100162
Popkov V. I., Almjasheva O. V., Schmidt M. P., Gusarov V. V. Formation mechanism of nanocrystalline yttrium orthoferrite under heat treatment of the coprecipitated hydroxides. Russian Journal of General Chemistry, 2015, v. 85(6), pp. 1370−1375. https://doi.org/10.1134/S0036023615100162
Popkov V. I., Izotova S. G., Almjasheva O. V., Schmidt M. P., Gusarov V. V. Features of nanosized YFeO3 formation under heat treatment of glycinenitrate combustion products. Russian Journal of Inorganic Chemistry, 2015, v. 60(10), pp. 1193−1198. https://doi.org/10.1134/S0036023615100162
Chithralekha P., Murugeswari C., Ramachandran K., Srinivasan R. The study on ultrasonic velocities of CoxFe3-xO4 nanoferrofl uid prepared by co-precipitation method. Nanosystems: Physics, Chemistry, Mathematics, 2016, v. 7(3), pp. 558–560. https://doi.org/10.17586/2220-8054-2016-7-3-558-560
Nguyen A. T., Phan Ph. Nh, Mittova I. Ya., Knurorova M. V., Mittova V. O. The characterization of nanosized ZnFe2O4 material prepared by coprecipitation. Nanosystems: Physics, Chemistry, Mathematics, 2016, v. 7(3), pp. 459–463. https://doi.org/10.17586/2220-8054-2016-7-3-459-463
Lomanova N. A., Ugolkov V. L., Gusarov V. V. Thermal behavior of layered perovskite-like compounds in the Bi4Ti3O12-BiFeO3 system. Glass Physics and Chemistry, 2007, v. 33(6), pp. 608−612. https://doi.org/10.1134/S1087659607060120
Nguyen A. T., Almjasheva O. V., Mittova I. Ya., Stognei O. V., Soldatenko S. A. Synthesis and magnetic properties of YFeO3 nanocrystals. Inorganic Materials, 2009, v. 45(11), pp. 1392–1397. https://doi.org/10.1134/S002016850
Perrot P. Iron–Oxygen–Yttrium. Ternary Alloy Systems, 2009, v. 11(5), pp. 1–18. https://doi.org/10.1007/978-3-540-70890-2_23
Shiwani Sharma, Saravanan P., Pandey O. P, Vinod V. T. P., Cernic M., Sharma P. Magnetic behaviour of sol–gel driven BiFeO3 thin fi lms with different grain size distribution. Journal of Magnetism and Magnetic Materials, 2016, v. 401, pp. 180–187. https://doi.org/10.1016/j.jmmm.2015.10.035
Nikitin M. P., Vetoshko P. M., Nikitin P. I., Bnjsentsov N. A. Highly sensitive room temperature method of non-invasive in vivo Detection of magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 2009, v. 321. pp. 1658−1661. https://doi.org/10.1016/j.jmmm.2009.02.108
Vetoshko P., Skidanov V., Stempkovskiy A. Magnetization distribution near edge of YIG fi lm core in fluxgate magnetometer. Sensor Letters, 2013, v. 11(1), 59−61. https://doi.org/10.1166/sl.2013.2768
Berezhnaya M. V., Mittova I. Y., Viryutina E. L., Perov N. S., Bessalova V. V., Al’myasheva O. V., Nguyen A. T., Mittova V. O. Production of zinc-doped yttrium ferrite nanopowders by the sol–gel method. Russian Journal of Inorganic Chemistry, 2018, v. 63(6), pp. 742−746. https://doi.org/10.1134/S0036023618060049
Berezhnaya M. V., Perov N. S., Almjasheva O. V., Mittova V. O, Nguyen A. T., Mittova I. Ya., Druzhinina L. V., Alekhina Yu. A. Synthesis and magnetic properties of barium-doped nanocrystal lanthanum orthoferrite. Russian Journal of General Chemistry, 2018, v. 89(3), pp. 480−485. https://doi.org/10.1134/S1070363219030198
Nguyen A. T., Pham Vinh N. T., Nguyen T. Tr. L., Mittova V. O., Vo Q. M., Berezhnaya M. V., Mittova I. Ya., Do Tr. H., Chau H. D. Crystal structure and magnetic properties of perovskite YFe1–xMnxO3 nanopowders synthesized by co-precipitation method. Solid State Sciences, 2019, v. 96, p. 105922. https://doi.org/10.1016/j.solidstatesciences.2019.06.011
Nguyen А. Т., Berezhnay M. V., Pham T. L., Mittova V. O., Vo Q. M., Nguyen T. Tr. L., Do Tr. H., Mittova I. Ya., Viryutina E. L. Synthesis and magnetic characteristics of neodymium ferrite powders with perovskite structure. Russian Journal of Applied Chemistry, 2019, v. 92(4), pp. 498−504. https://doi.org/S1070427219040050
Milyaeva I. A., Perov N. S., Bessalova V. V., Berezhnaya М. V., Mittova V. О., Nguyen A. T., Mittova I. Ya. Synthesis and properties of nanoscale fi lms of the Y2O3–Fe2O3 system on silicon. Nanosystems: physics, chemistry, mathematics, 2018, v. 9(3), pp. 417–423. https://doi.org/10.17586/2220-8054-2018-9-3-417-423
Ievlev V. M. Aktivatsiya tverdofaznykh protsessov izlucheniyem gazorazryadnykh lamp [Activation of solid-phase processes by radiation of gas-discharge lamps]. Russian Chemical Reviews, 2013, v. 82(9), pp. 815−834. https://doi.org/10.1070/RC2013v082n09ABEH004357
JCPDC PCPDFWIN: A Windows Retrieval/Display program for Accessing the ICDD PDF – 2 Data base, International Centre for Diffraction Data, 1997.
Monina L. N. Rentgenografi ya. Kachestvennyy rentgenofazovyy analiz [Roentgenography qualitative X-ray phase analysis], M.: Prospect Publ., 2017, 130 p. (in Russ.).
Tretyakov N. N., Mittova I. Y., Sladkopevtsev B. V., Samsonov A. A., Andreenko S. Y. Effect of a magnetron-sputtered MnO2 layer on the thermal oxidation kinetics of InP and the composition and morphology of the resultant fi lms. Inorganic Materials, 2017, v. 53(1), pp. 65−71. https://doi.org/10.1134/S0020168517010174