实施远程泥浆测井解决方案以支持加勒比海深水项目:一个去曼宁案例研究

Evan Smith
{"title":"实施远程泥浆测井解决方案以支持加勒比海深水项目:一个去曼宁案例研究","authors":"Evan Smith","doi":"10.2118/204654-ms","DOIUrl":null,"url":null,"abstract":"\n Today's oil and gas industry is a global endeavor. With technological advances in data management and transfer, the ability for experienced engineers to receive, interpret, and make decisions from all over the globe in near real-time is not only achievable, but is becoming more desirable. Provoked by downturns and reduced personnel numbers, methods of increasing efficiency and cost reduction has gradually moved engineers away from the rig site, while still undertaking the same roles and responsibilities. This paper examines one case for an operator in the Caribbean.\n One major client drilling in the Caribbean was forced to explore reduced staffing options on one of its deep-water drilling rigs after flight cancellations, border closures, and isolation/quarantine procedures were implemented due to the COVID-19 pandemic. This made getting experienced data engineers and sample collection personnel to the rig site impossible. Two data engineers, two mud loggers, and two sample catchers are on the rig during normal operations, but with the above-mentioned challenges, only two mud loggers remained on site. The mudlogging service provider proposed intercompany collaboration with a region experienced in remote operational support, and a remote monitoring station was set up and manned with experienced data engineers to support real-time operations. A focal point between the remote engineers and the rig team was designated, and was responsible for communicating roles and responsibilities, linking the two teams. A robust communication protocol was established between the mudlogging crew, the remote personnel, the drill floor, and the company man which outlined specifics of which events would trigger communication between parties.\n Two intermediate hole sections were successfully drilled, without any interruption or delay. The remote engineers successfully participated in the rigs well control drills, calling directly to the rig when needed. During drilling, the experienced remote personnel were able to provide topic specific guidance to the less experienced engineers at the rig site, which accelerated their on-the-job training. This guidance encouraged and allowed for decreased reliance on the remote support over the course of drilling. The operator considered the implementation of the remote engineers a success and looked to implement additional remote resources from other service lines and providers.\n Development of additional remote support opportunities directly reduces risk and cost of personnel at the rig site throughout all aspects of the oil and gas industry. Reduction of personnel on site reduces overall exposure to the hazards associated with the rig site and would decrease the probability of incident. Recent improvements in technology and communication have made it possible for this to be a viable solution to de-manning the rig site in an evolving industry.","PeriodicalId":11094,"journal":{"name":"Day 2 Mon, November 29, 2021","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementing Remote Mudlogging Solutions to Support a Deepwater Project in the Caribbean: A De-Manning Case Study\",\"authors\":\"Evan Smith\",\"doi\":\"10.2118/204654-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Today's oil and gas industry is a global endeavor. With technological advances in data management and transfer, the ability for experienced engineers to receive, interpret, and make decisions from all over the globe in near real-time is not only achievable, but is becoming more desirable. Provoked by downturns and reduced personnel numbers, methods of increasing efficiency and cost reduction has gradually moved engineers away from the rig site, while still undertaking the same roles and responsibilities. This paper examines one case for an operator in the Caribbean.\\n One major client drilling in the Caribbean was forced to explore reduced staffing options on one of its deep-water drilling rigs after flight cancellations, border closures, and isolation/quarantine procedures were implemented due to the COVID-19 pandemic. This made getting experienced data engineers and sample collection personnel to the rig site impossible. Two data engineers, two mud loggers, and two sample catchers are on the rig during normal operations, but with the above-mentioned challenges, only two mud loggers remained on site. The mudlogging service provider proposed intercompany collaboration with a region experienced in remote operational support, and a remote monitoring station was set up and manned with experienced data engineers to support real-time operations. A focal point between the remote engineers and the rig team was designated, and was responsible for communicating roles and responsibilities, linking the two teams. A robust communication protocol was established between the mudlogging crew, the remote personnel, the drill floor, and the company man which outlined specifics of which events would trigger communication between parties.\\n Two intermediate hole sections were successfully drilled, without any interruption or delay. The remote engineers successfully participated in the rigs well control drills, calling directly to the rig when needed. During drilling, the experienced remote personnel were able to provide topic specific guidance to the less experienced engineers at the rig site, which accelerated their on-the-job training. This guidance encouraged and allowed for decreased reliance on the remote support over the course of drilling. The operator considered the implementation of the remote engineers a success and looked to implement additional remote resources from other service lines and providers.\\n Development of additional remote support opportunities directly reduces risk and cost of personnel at the rig site throughout all aspects of the oil and gas industry. Reduction of personnel on site reduces overall exposure to the hazards associated with the rig site and would decrease the probability of incident. Recent improvements in technology and communication have made it possible for this to be a viable solution to de-manning the rig site in an evolving industry.\",\"PeriodicalId\":11094,\"journal\":{\"name\":\"Day 2 Mon, November 29, 2021\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Mon, November 29, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/204654-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Mon, November 29, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/204654-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当今的石油和天然气行业是一个全球性的行业。随着数据管理和传输技术的进步,经验丰富的工程师不仅可以近乎实时地接收、解释和做出来自全球各地的决策,而且越来越受欢迎。由于经济低迷和人员数量减少,提高效率和降低成本的方法逐渐将工程师从钻井现场转移出去,同时仍然承担相同的角色和责任。本文研究了加勒比地区一家运营商的一个案例。由于2019冠状病毒病(COVID-19)大流行,航班取消、边境关闭和隔离/检疫程序实施后,加勒比地区的一个主要钻井客户被迫在其一个深水钻井平台上探索减少人员配置的选择。这使得有经验的数据工程师和样品采集人员无法到达钻井现场。在正常作业期间,钻井平台上有两名数据工程师、两名泥浆录井仪和两名样本捕获器,但由于上述挑战,现场只剩下两名泥浆录井仪。泥浆测井服务提供商建议与具有远程操作支持经验的地区进行公司间合作,并建立了一个远程监测站,并配备了经验丰富的数据工程师,以支持实时操作。远程工程师和钻井团队之间指定了一个联络人,负责沟通角色和职责,将两个团队联系起来。在录井人员、远程人员、钻台和公司人员之间建立了一个强大的通信协议,该协议概述了哪些事件会触发各方之间的通信的细节。在没有任何中断或延迟的情况下,成功钻探了两个中间井段。远程工程师成功地参与了钻机的井控钻井,在需要时直接呼叫钻机。在钻井过程中,经验丰富的远程人员能够为钻井现场经验不足的工程师提供特定主题的指导,从而加快了他们的在职培训。该指南鼓励并允许在钻井过程中减少对远程支持的依赖。作业者认为远程工程师的实施是成功的,并希望从其他服务线和供应商那里获得额外的远程资源。其他远程支持机会的发展直接降低了石油和天然气行业各个方面的钻井现场人员的风险和成本。现场人员的减少减少了与钻井现场相关的危险的总体暴露,并降低了事故发生的可能性。最近技术和通信的进步使其成为一个可行的解决方案,可以在不断发展的行业中减少钻机现场的人员。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Implementing Remote Mudlogging Solutions to Support a Deepwater Project in the Caribbean: A De-Manning Case Study
Today's oil and gas industry is a global endeavor. With technological advances in data management and transfer, the ability for experienced engineers to receive, interpret, and make decisions from all over the globe in near real-time is not only achievable, but is becoming more desirable. Provoked by downturns and reduced personnel numbers, methods of increasing efficiency and cost reduction has gradually moved engineers away from the rig site, while still undertaking the same roles and responsibilities. This paper examines one case for an operator in the Caribbean. One major client drilling in the Caribbean was forced to explore reduced staffing options on one of its deep-water drilling rigs after flight cancellations, border closures, and isolation/quarantine procedures were implemented due to the COVID-19 pandemic. This made getting experienced data engineers and sample collection personnel to the rig site impossible. Two data engineers, two mud loggers, and two sample catchers are on the rig during normal operations, but with the above-mentioned challenges, only two mud loggers remained on site. The mudlogging service provider proposed intercompany collaboration with a region experienced in remote operational support, and a remote monitoring station was set up and manned with experienced data engineers to support real-time operations. A focal point between the remote engineers and the rig team was designated, and was responsible for communicating roles and responsibilities, linking the two teams. A robust communication protocol was established between the mudlogging crew, the remote personnel, the drill floor, and the company man which outlined specifics of which events would trigger communication between parties. Two intermediate hole sections were successfully drilled, without any interruption or delay. The remote engineers successfully participated in the rigs well control drills, calling directly to the rig when needed. During drilling, the experienced remote personnel were able to provide topic specific guidance to the less experienced engineers at the rig site, which accelerated their on-the-job training. This guidance encouraged and allowed for decreased reliance on the remote support over the course of drilling. The operator considered the implementation of the remote engineers a success and looked to implement additional remote resources from other service lines and providers. Development of additional remote support opportunities directly reduces risk and cost of personnel at the rig site throughout all aspects of the oil and gas industry. Reduction of personnel on site reduces overall exposure to the hazards associated with the rig site and would decrease the probability of incident. Recent improvements in technology and communication have made it possible for this to be a viable solution to de-manning the rig site in an evolving industry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How Leaders Can Shape the Oil & Gas Industry – Accelerating Innovations Through Business & Environmental Intelligent Systems High Performance Friction Reducer for Slickwater Fracturing Applications: Laboratory Study and Field Implementation CO2 Waterless Fracturing and Huff and Puff in Tight Oil Reservoir Switched Reluctance Motor for Electric Submersible Pump Sparse Water Fracture Channel Detection from Subsurface Sensors Via a Smart Orthogonal Matching Pursuit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1