Pi电力系统控制器:基于特征结构的设计与灵敏度

Q4 Economics, Econometrics and Finance International Journal of Energy, Environment and Economics Pub Date : 2021-11-26 DOI:10.46300/91012.2021.15.14
A. El kashlan, Shady El kashlan
{"title":"Pi电力系统控制器:基于特征结构的设计与灵敏度","authors":"A. El kashlan, Shady El kashlan","doi":"10.46300/91012.2021.15.14","DOIUrl":null,"url":null,"abstract":"Significant advances in power system control design techniques that can take into consideration plants linearized around a number of operating conditions. Most of these techniques are based on eigenspectrum analysis which has numerous advantages. A wealth of applications of eigenstructure assignment are available in the literature and showed that new applications have been found and parametric solution of eigenspectrum assignment can be used successfully to design feedback controllers. The use of supplementary controller added to the automatic voltage regulator (AVR) is a practical effective way to supply additional positive damping to system oscillations via power system stabilizers. The present paper utilizes eigenspectrum analysis in the practical design of proportional integral (PI) type power system stabilizers, in order to achieve good steady state as well as transient response characteristics. Eigenspectrum analysis is attractive since it takes into account freedom in determining feedback gains and provides the frequencies and the damping at each frequency for the entire system in a single calculation. Moreover sensitivity of eigenvalues and eigenvectors with respect to parameter variations are assessed so as to provide information to improve setting parameters for power system damping and stability, without ignoring the operating conditions. The results of eigenvalue/eigenvector sensitivity are tangible for analysis with a wide range of parameter variations and is presented through the right and left eigenvectors of the system matrix and also through Taylor series analysis.","PeriodicalId":39336,"journal":{"name":"International Journal of Energy, Environment and Economics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pi Power System Controller: Eigenstructure – Based Design and Sensitivities\",\"authors\":\"A. El kashlan, Shady El kashlan\",\"doi\":\"10.46300/91012.2021.15.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Significant advances in power system control design techniques that can take into consideration plants linearized around a number of operating conditions. Most of these techniques are based on eigenspectrum analysis which has numerous advantages. A wealth of applications of eigenstructure assignment are available in the literature and showed that new applications have been found and parametric solution of eigenspectrum assignment can be used successfully to design feedback controllers. The use of supplementary controller added to the automatic voltage regulator (AVR) is a practical effective way to supply additional positive damping to system oscillations via power system stabilizers. The present paper utilizes eigenspectrum analysis in the practical design of proportional integral (PI) type power system stabilizers, in order to achieve good steady state as well as transient response characteristics. Eigenspectrum analysis is attractive since it takes into account freedom in determining feedback gains and provides the frequencies and the damping at each frequency for the entire system in a single calculation. Moreover sensitivity of eigenvalues and eigenvectors with respect to parameter variations are assessed so as to provide information to improve setting parameters for power system damping and stability, without ignoring the operating conditions. The results of eigenvalue/eigenvector sensitivity are tangible for analysis with a wide range of parameter variations and is presented through the right and left eigenvectors of the system matrix and also through Taylor series analysis.\",\"PeriodicalId\":39336,\"journal\":{\"name\":\"International Journal of Energy, Environment and Economics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Energy, Environment and Economics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46300/91012.2021.15.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Economics, Econometrics and Finance\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy, Environment and Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46300/91012.2021.15.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 0

摘要

电力系统控制设计技术的重大进步,可以考虑到围绕许多运行条件线性化的电厂。这些技术大多基于特征谱分析,具有许多优点。在文献中有大量的特征结构分配的应用,并表明已经发现了新的应用,特征谱分配的参数解可以成功地用于设计反馈控制器。在自动电压调节器(AVR)中加入补充控制器是一种实用有效的方法,可以通过电力系统稳定器为系统振荡提供额外的正阻尼。本文将特征谱分析应用于比例积分型电力系统稳定器的实际设计中,以获得良好的稳态和暂态响应特性。特征谱分析很有吸引力,因为它考虑了确定反馈增益的自由度,并在一次计算中为整个系统提供了频率和每个频率上的阻尼。此外,还评估了特征值和特征向量对参数变化的敏感性,以便在不忽略运行条件的情况下,为改进电力系统阻尼和稳定性的参数设置提供信息。特征值/特征向量灵敏度的结果对于大范围参数变化的分析是有形的,并通过系统矩阵的左右特征向量和泰勒级数分析来表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pi Power System Controller: Eigenstructure – Based Design and Sensitivities
Significant advances in power system control design techniques that can take into consideration plants linearized around a number of operating conditions. Most of these techniques are based on eigenspectrum analysis which has numerous advantages. A wealth of applications of eigenstructure assignment are available in the literature and showed that new applications have been found and parametric solution of eigenspectrum assignment can be used successfully to design feedback controllers. The use of supplementary controller added to the automatic voltage regulator (AVR) is a practical effective way to supply additional positive damping to system oscillations via power system stabilizers. The present paper utilizes eigenspectrum analysis in the practical design of proportional integral (PI) type power system stabilizers, in order to achieve good steady state as well as transient response characteristics. Eigenspectrum analysis is attractive since it takes into account freedom in determining feedback gains and provides the frequencies and the damping at each frequency for the entire system in a single calculation. Moreover sensitivity of eigenvalues and eigenvectors with respect to parameter variations are assessed so as to provide information to improve setting parameters for power system damping and stability, without ignoring the operating conditions. The results of eigenvalue/eigenvector sensitivity are tangible for analysis with a wide range of parameter variations and is presented through the right and left eigenvectors of the system matrix and also through Taylor series analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Energy, Environment and Economics
International Journal of Energy, Environment and Economics Economics, Econometrics and Finance-Economics, Econometrics and Finance (all)
CiteScore
1.10
自引率
0.00%
发文量
0
期刊介绍: International Journal of Energy, Environment, and Economics publishes original research papers that shed light on the interaction between the utilization of energy and the environment, as well as the economic aspects involved with this utilization. The Journal is a vehicle for an international exchange and dissemination of ideas in the multidisciplinary field of energy-environment-economics between research scientists, engineers, economists, policy makers, and others concerned about these issues. The emphasis will be placed on original work, either in the area of scientific or engineering development, or in the area of technological, environmental, economic, or social feasibility. Shorter communications are also invited. The Journal will carry reviews on important issues, which may be invited by the Editors or submitted in the normal way.
期刊最新文献
Determination of a Mathematical Model of Taper Wear for a Longitudinal Surfacing Operation Designing of Dual Power Generation Solar Plus Wind Energy Hybrid System using MPPT Wind and PV Hybrid Micro Grid Power Generation System Getting Ready for Exam of a Special Competence Integration of Migration Flows. A Diffusive Theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1