西部山间禾草对土壤氮素响应的对比

T. Monaco, Douglas A. Johnson, J. Norton, T. A. Jones, K. Connors, J. Norton, Margaret B. Redinbaugh
{"title":"西部山间禾草对土壤氮素响应的对比","authors":"T. Monaco, Douglas A. Johnson, J. Norton, T. A. Jones, K. Connors, J. Norton, Margaret B. Redinbaugh","doi":"10.2307/4003820","DOIUrl":null,"url":null,"abstract":"The mechanisms responsible for soil-N-mediated species replacement of native perennial grasses by the invasive annual grasses cheatgrass (Bromus tectorum L.) and medusahead (Taeniatherum caput-medusae [L.] Nevski) on rangelands are not completely understood. In addition, the contributions of distinct forms of inorganic N (i.e., NH 4 + and NO 3 -) to these shifts in species composition are currently unclear. Consequently, we conducted a greenhouse experiment to test 2 hypotheses: 1) that low N availability reduces growth (root and shoot) and N allocation of invasive annual seedlings more than native perennial species, and 2) that seedling growth and N allocation of invasive annual grasses is more responsive than native perennial grasses when supplied with NO 3 - relative to NH 4 +. We grew seedlings of 2 annual grasses and the native perennial grasses bluebunch wheatgrass (Pseudoroegneria spicata [Pursh] A. Love), and 4 populations of squirreltail (Elymus elymoides [Raf.] Swezey; E. multisetus [J.G. Smith] M.E. Jones) in separate pots and exposed them to treatments differing in N form and availability for 17 weeks. Unexpectedly, root and shoot growth of annual grasses were equal or greater than native perennial grasses under low N availability. Annual grasses took up more NO 3 - and allocated more growth and N to shoots than the perennial grasses (P < 0.05). Perennial grasses had significantly greater root:shoot dry mass ratios than the invasive annual grasses across treatments (P < 0.05). Invasive annual and native perennial grasses both had greater (P < 0.05) shoot and root mass and allocated more N to these structures when supplied with NO 3 - relative to NH 4 +. The ecological implications of these growth and N allocation patterns in response to N availability and form provide important clues regarding the specific traits responsible for differences in competitive ability between invasive annual and native perennial grasses on semiarid rangelands.","PeriodicalId":16918,"journal":{"name":"Journal of Range Management","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2003-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"131","resultStr":"{\"title\":\"Contrasting responses of Intermountain West grasses to soil nitrogen\",\"authors\":\"T. Monaco, Douglas A. Johnson, J. Norton, T. A. Jones, K. Connors, J. Norton, Margaret B. Redinbaugh\",\"doi\":\"10.2307/4003820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mechanisms responsible for soil-N-mediated species replacement of native perennial grasses by the invasive annual grasses cheatgrass (Bromus tectorum L.) and medusahead (Taeniatherum caput-medusae [L.] Nevski) on rangelands are not completely understood. In addition, the contributions of distinct forms of inorganic N (i.e., NH 4 + and NO 3 -) to these shifts in species composition are currently unclear. Consequently, we conducted a greenhouse experiment to test 2 hypotheses: 1) that low N availability reduces growth (root and shoot) and N allocation of invasive annual seedlings more than native perennial species, and 2) that seedling growth and N allocation of invasive annual grasses is more responsive than native perennial grasses when supplied with NO 3 - relative to NH 4 +. We grew seedlings of 2 annual grasses and the native perennial grasses bluebunch wheatgrass (Pseudoroegneria spicata [Pursh] A. Love), and 4 populations of squirreltail (Elymus elymoides [Raf.] Swezey; E. multisetus [J.G. Smith] M.E. Jones) in separate pots and exposed them to treatments differing in N form and availability for 17 weeks. Unexpectedly, root and shoot growth of annual grasses were equal or greater than native perennial grasses under low N availability. Annual grasses took up more NO 3 - and allocated more growth and N to shoots than the perennial grasses (P < 0.05). Perennial grasses had significantly greater root:shoot dry mass ratios than the invasive annual grasses across treatments (P < 0.05). Invasive annual and native perennial grasses both had greater (P < 0.05) shoot and root mass and allocated more N to these structures when supplied with NO 3 - relative to NH 4 +. The ecological implications of these growth and N allocation patterns in response to N availability and form provide important clues regarding the specific traits responsible for differences in competitive ability between invasive annual and native perennial grasses on semiarid rangelands.\",\"PeriodicalId\":16918,\"journal\":{\"name\":\"Journal of Range Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"131\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Range Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2307/4003820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Range Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/4003820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 131

摘要

土壤n介导的本地多年生禾草被入侵的一年生禾草Bromus tectorum L.和medusahead Taeniatherum capt -medusae [L.][Nevski])在牧场上的作用并不完全清楚。此外,不同形式的无机氮(即nh4 +和no3 -)对这些物种组成变化的贡献目前尚不清楚。因此,我们通过温室试验验证了两个假设:1)低氮有效性对入侵一年生禾本科幼苗生长(根和梢)和N分配的影响大于本地多年生禾本科幼苗;2)在no3 -相对于nh4 +的条件下,入侵一年生禾本科幼苗生长和N分配的响应强于本地多年生禾本科幼苗。我们在这里种植了2种一年生禾本科植物和本土多年生禾本科植物蓝束麦草(Pseudoroegneria spicata [Pursh] A. Love)和4个鼠尾草(Elymus elymoides [Raf])的幼苗。] Swezey;[J.G.史密斯[M.E. Jones])在不同的花盆中,并将它们暴露在不同的N形态和可用性的处理中17周。低氮有效度条件下,一年生牧草的根、梢生长均大于或等于本地多年生牧草。一年生草对no3 -的吸收、生长和氮分配均高于多年生草(P < 0.05)。多年生草在不同处理下的根冠干质量比显著高于入侵一年生草(P < 0.05)。入侵一年生草和本地多年生草在no3 -(相对于nh4 +)的供应下,茎部和根质量均大于(P < 0.05),分配给这些结构的N也更多。这些生长和N分配模式对N有效性和形态的响应的生态学意义,为了解半干旱草地入侵一年生草和本地多年生草竞争能力差异的具体特征提供了重要线索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Contrasting responses of Intermountain West grasses to soil nitrogen
The mechanisms responsible for soil-N-mediated species replacement of native perennial grasses by the invasive annual grasses cheatgrass (Bromus tectorum L.) and medusahead (Taeniatherum caput-medusae [L.] Nevski) on rangelands are not completely understood. In addition, the contributions of distinct forms of inorganic N (i.e., NH 4 + and NO 3 -) to these shifts in species composition are currently unclear. Consequently, we conducted a greenhouse experiment to test 2 hypotheses: 1) that low N availability reduces growth (root and shoot) and N allocation of invasive annual seedlings more than native perennial species, and 2) that seedling growth and N allocation of invasive annual grasses is more responsive than native perennial grasses when supplied with NO 3 - relative to NH 4 +. We grew seedlings of 2 annual grasses and the native perennial grasses bluebunch wheatgrass (Pseudoroegneria spicata [Pursh] A. Love), and 4 populations of squirreltail (Elymus elymoides [Raf.] Swezey; E. multisetus [J.G. Smith] M.E. Jones) in separate pots and exposed them to treatments differing in N form and availability for 17 weeks. Unexpectedly, root and shoot growth of annual grasses were equal or greater than native perennial grasses under low N availability. Annual grasses took up more NO 3 - and allocated more growth and N to shoots than the perennial grasses (P < 0.05). Perennial grasses had significantly greater root:shoot dry mass ratios than the invasive annual grasses across treatments (P < 0.05). Invasive annual and native perennial grasses both had greater (P < 0.05) shoot and root mass and allocated more N to these structures when supplied with NO 3 - relative to NH 4 +. The ecological implications of these growth and N allocation patterns in response to N availability and form provide important clues regarding the specific traits responsible for differences in competitive ability between invasive annual and native perennial grasses on semiarid rangelands.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Grasses and Grassland Farming The Study of Plant Communities: An Introduction to Plant Ecology Research observation: Daily movement patterns of hill climbing and bottom dwelling cowsfull access The rangelands of the Sahel. Estimating Cattle Gains from Consumption of Digestible Forage on Ponderosa Pine Range (La Estimacion de Ganancias del Ganado Bovino por el Consumo de Forraje Digestible)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1