通过在线学习模板引导的Concolic测试

Sooyoung Cha, Seonho Lee, Hakjoo Oh
{"title":"通过在线学习模板引导的Concolic测试","authors":"Sooyoung Cha, Seonho Lee, Hakjoo Oh","doi":"10.1145/3238147.3238227","DOIUrl":null,"url":null,"abstract":"We present template-guided concolic testing, a new technique for effectively reducing the search space in concolic testing. Addressing the path-explosion problem has been a significant challenge in concolic testing. Diverse search heuristics have been proposed to mitigate this problem but using search heuristics alone is not sufficient to substantially improve code coverage for real-world programs. The goal of this paper is to complement existing techniques and achieve higher coverage by exploiting templates in concolic testing. In our approach, a template is a partially symbolized input vector whose job is to reduce the search space. However, choosing a right set of templates is nontrivial and significantly affects the final performance of our approach. We present an algorithm that automatically learns useful templates online, based on data collected from previous runs of concolic testing. The experimental results with open-source programs show that our technique achieves greater branch coverage and finds bugs more effectively than conventional concolic testing.","PeriodicalId":6622,"journal":{"name":"2018 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"36 2-3 1","pages":"408-418"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Template-Guided Concolic Testing via Online Learning\",\"authors\":\"Sooyoung Cha, Seonho Lee, Hakjoo Oh\",\"doi\":\"10.1145/3238147.3238227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present template-guided concolic testing, a new technique for effectively reducing the search space in concolic testing. Addressing the path-explosion problem has been a significant challenge in concolic testing. Diverse search heuristics have been proposed to mitigate this problem but using search heuristics alone is not sufficient to substantially improve code coverage for real-world programs. The goal of this paper is to complement existing techniques and achieve higher coverage by exploiting templates in concolic testing. In our approach, a template is a partially symbolized input vector whose job is to reduce the search space. However, choosing a right set of templates is nontrivial and significantly affects the final performance of our approach. We present an algorithm that automatically learns useful templates online, based on data collected from previous runs of concolic testing. The experimental results with open-source programs show that our technique achieves greater branch coverage and finds bugs more effectively than conventional concolic testing.\",\"PeriodicalId\":6622,\"journal\":{\"name\":\"2018 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"volume\":\"36 2-3 1\",\"pages\":\"408-418\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3238147.3238227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3238147.3238227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文提出了一种新的模板引导聚类测试方法,可以有效地减少聚类测试中的搜索空间。解决路径爆炸问题一直是结肠试验的重大挑战。已经提出了多种搜索启发式方法来缓解这个问题,但是单独使用搜索启发式方法不足以从本质上提高实际程序的代码覆盖率。本文的目标是补充现有的技术,并通过利用模板来实现更高的覆盖率。在我们的方法中,模板是一个部分符号化的输入向量,其任务是减少搜索空间。然而,选择一组正确的模板是非常重要的,并且会显著影响我们方法的最终性能。我们提出了一个算法,自动学习有用的模板在线,基于数据收集从以前运行的结肠测试。开源程序的实验结果表明,我们的技术实现了更大的分支覆盖率,并且比传统的concolic测试更有效地发现bug。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Template-Guided Concolic Testing via Online Learning
We present template-guided concolic testing, a new technique for effectively reducing the search space in concolic testing. Addressing the path-explosion problem has been a significant challenge in concolic testing. Diverse search heuristics have been proposed to mitigate this problem but using search heuristics alone is not sufficient to substantially improve code coverage for real-world programs. The goal of this paper is to complement existing techniques and achieve higher coverage by exploiting templates in concolic testing. In our approach, a template is a partially symbolized input vector whose job is to reduce the search space. However, choosing a right set of templates is nontrivial and significantly affects the final performance of our approach. We present an algorithm that automatically learns useful templates online, based on data collected from previous runs of concolic testing. The experimental results with open-source programs show that our technique achieves greater branch coverage and finds bugs more effectively than conventional concolic testing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatically Testing Implementations of Numerical Abstract Domains Self-Protection of Android Systems from Inter-component Communication Attacks Characterizing the Natural Language Descriptions in Software Logging Statements DroidMate-2: A Platform for Android Test Generation CPA-SymExec: Efficient Symbolic Execution in CPAchecker
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1