面向增材制造的自支撑封闭孔洞拓扑优化

Cunfu Wang
{"title":"面向增材制造的自支撑封闭孔洞拓扑优化","authors":"Cunfu Wang","doi":"10.1115/detc2021-68785","DOIUrl":null,"url":null,"abstract":"\n The paper proposes a heat-flux based topology optimization approach to design self-supported enclosed voids for additive manufacturing. The enclosed overhangs that require supports in additive manufacturing are removed from the optimized design by constraining the maximum temperature of a pseudo heat conduction problem. In the pseudo problem, heat flux is applied on the non-self-supported open and enclosed surfaces. Since the density-based topology optimization involves no explicit boundary representation, we impose such surface slope dependent heat flux through a domain integral of a Heaviside projected density gradient. In addition, the solid materials and the void materials in the pseudo problem are assumed to be thermally insulating and conductive, respectively. As such, heat flux on the open surfaces can be successfully conducted to external heat sink through the void (or conductive) materials. However, heat flux on the non-self-supported enclosed surfaces is isolated by the solid (or insulating) materials and thus leads to locally high temperature. Hence, by limiting the maximum temperature of the pseudo problem, self-supported enclosed voids can be achieved, and the slope of the open surfaces would not be affected. Numerical examples are presented to demonstrate the validity and effectiveness of the proposed approach in the design of self-supported enclosed voids.","PeriodicalId":23602,"journal":{"name":"Volume 2: 41st Computers and Information in Engineering Conference (CIE)","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Topology Optimization of Self-Supported Enclosed Voids for Additive Manufacturing\",\"authors\":\"Cunfu Wang\",\"doi\":\"10.1115/detc2021-68785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The paper proposes a heat-flux based topology optimization approach to design self-supported enclosed voids for additive manufacturing. The enclosed overhangs that require supports in additive manufacturing are removed from the optimized design by constraining the maximum temperature of a pseudo heat conduction problem. In the pseudo problem, heat flux is applied on the non-self-supported open and enclosed surfaces. Since the density-based topology optimization involves no explicit boundary representation, we impose such surface slope dependent heat flux through a domain integral of a Heaviside projected density gradient. In addition, the solid materials and the void materials in the pseudo problem are assumed to be thermally insulating and conductive, respectively. As such, heat flux on the open surfaces can be successfully conducted to external heat sink through the void (or conductive) materials. However, heat flux on the non-self-supported enclosed surfaces is isolated by the solid (or insulating) materials and thus leads to locally high temperature. Hence, by limiting the maximum temperature of the pseudo problem, self-supported enclosed voids can be achieved, and the slope of the open surfaces would not be affected. Numerical examples are presented to demonstrate the validity and effectiveness of the proposed approach in the design of self-supported enclosed voids.\",\"PeriodicalId\":23602,\"journal\":{\"name\":\"Volume 2: 41st Computers and Information in Engineering Conference (CIE)\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: 41st Computers and Information in Engineering Conference (CIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2021-68785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: 41st Computers and Information in Engineering Conference (CIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2021-68785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于热流密度的拓扑优化方法来设计用于增材制造的自支撑封闭空隙。通过限制伪热传导问题的最高温度,从优化设计中消除了增材制造中需要支撑的封闭悬垂。在伪问题中,热流分别作用于非自支撑的开、封闭表面。由于基于密度的拓扑优化没有明确的边界表示,我们通过Heaviside投影密度梯度的域积分来施加这种依赖于表面斜率的热通量。此外,伪问题中的固体材料和空隙材料分别假定为隔热和导电。因此,开放表面上的热流可以成功地通过空隙(或导电)材料传导到外部散热器。然而,非自支撑封闭表面上的热流被固体(或绝缘)材料隔离,从而导致局部高温。因此,通过限制伪问题的最高温度,可以实现自支撑的封闭空隙,并且不影响开放表面的斜率。数值算例验证了该方法在自支撑封闭孔洞设计中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Topology Optimization of Self-Supported Enclosed Voids for Additive Manufacturing
The paper proposes a heat-flux based topology optimization approach to design self-supported enclosed voids for additive manufacturing. The enclosed overhangs that require supports in additive manufacturing are removed from the optimized design by constraining the maximum temperature of a pseudo heat conduction problem. In the pseudo problem, heat flux is applied on the non-self-supported open and enclosed surfaces. Since the density-based topology optimization involves no explicit boundary representation, we impose such surface slope dependent heat flux through a domain integral of a Heaviside projected density gradient. In addition, the solid materials and the void materials in the pseudo problem are assumed to be thermally insulating and conductive, respectively. As such, heat flux on the open surfaces can be successfully conducted to external heat sink through the void (or conductive) materials. However, heat flux on the non-self-supported enclosed surfaces is isolated by the solid (or insulating) materials and thus leads to locally high temperature. Hence, by limiting the maximum temperature of the pseudo problem, self-supported enclosed voids can be achieved, and the slope of the open surfaces would not be affected. Numerical examples are presented to demonstrate the validity and effectiveness of the proposed approach in the design of self-supported enclosed voids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Bus Factor in Conceptual System Design: Protecting a Design Process Against Major Regional and World Events Exploration of the Digital Innovation Process in the Smart Product-Service System Optimized Torque Assistance During Walking With an Idealized Hip Exoskeleton An Algorithm for Partitioning Objects Into a Cube Skeleton and Segmented Shell Covers for Parallelized Additive Manufacturing Neurocognitive Effects of Incentivizing Students to Improve Performance Through Repeat Attempts in Design Settings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1