M. Furuse, Jun Tamogami, T. Hosaka, T. Kikukawa, N. Shinya, M. Hato, N. Ohsawa, S. Kim, K. Jung, M. Demura, S. Miyauchi, N. Kamo, K. Shimono, T. Kimura-Someya, S. Yokoyama, M. Shirouzu
{"title":"海洋植物髋臼紫红质I光循环慢、质子释放晚的结构基础。","authors":"M. Furuse, Jun Tamogami, T. Hosaka, T. Kikukawa, N. Shinya, M. Hato, N. Ohsawa, S. Kim, K. Jung, M. Demura, S. Miyauchi, N. Kamo, K. Shimono, T. Kimura-Someya, S. Yokoyama, M. Shirouzu","doi":"10.1107/S1399004715015722","DOIUrl":null,"url":null,"abstract":"Although many crystal structures of microbial rhodopsins have been solved, those with sufficient resolution to identify the functional water molecules are very limited. In this study, the Acetabularia rhodopsin I (ARI) protein derived from the marine alga A. acetabulum was synthesized on a large scale by the Escherichia coli cell-free membrane-protein production method, and crystal structures of ARI were determined at the second highest (1.52-1.80 Å) resolution for a microbial rhodopsin, following bacteriorhodopsin (BR). Examinations of the photochemical properties of ARI revealed that the photocycle of ARI is slower than that of BR and that its proton-transfer reactions are different from those of BR. In the present structures, a large cavity containing numerous water molecules exists on the extracellular side of ARI, explaining the relatively low pKa of Glu206(ARI), which cannot function as an initial proton-releasing residue at any pH. An interhelical hydrogen bond exists between Leu97(ARI) and Tyr221(ARI) on the cytoplasmic side, which facilitates the slow photocycle and regulates the pKa of Asp100(ARI), a potential proton donor to the Schiff base, in the dark state.","PeriodicalId":6895,"journal":{"name":"Acta Crystallographica Section D: Biological Crystallography","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Structural basis for the slow photocycle and late proton release in Acetabularia rhodopsin I from the marine plant Acetabularia acetabulum.\",\"authors\":\"M. Furuse, Jun Tamogami, T. Hosaka, T. Kikukawa, N. Shinya, M. Hato, N. Ohsawa, S. Kim, K. Jung, M. Demura, S. Miyauchi, N. Kamo, K. Shimono, T. Kimura-Someya, S. Yokoyama, M. Shirouzu\",\"doi\":\"10.1107/S1399004715015722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although many crystal structures of microbial rhodopsins have been solved, those with sufficient resolution to identify the functional water molecules are very limited. In this study, the Acetabularia rhodopsin I (ARI) protein derived from the marine alga A. acetabulum was synthesized on a large scale by the Escherichia coli cell-free membrane-protein production method, and crystal structures of ARI were determined at the second highest (1.52-1.80 Å) resolution for a microbial rhodopsin, following bacteriorhodopsin (BR). Examinations of the photochemical properties of ARI revealed that the photocycle of ARI is slower than that of BR and that its proton-transfer reactions are different from those of BR. In the present structures, a large cavity containing numerous water molecules exists on the extracellular side of ARI, explaining the relatively low pKa of Glu206(ARI), which cannot function as an initial proton-releasing residue at any pH. An interhelical hydrogen bond exists between Leu97(ARI) and Tyr221(ARI) on the cytoplasmic side, which facilitates the slow photocycle and regulates the pKa of Asp100(ARI), a potential proton donor to the Schiff base, in the dark state.\",\"PeriodicalId\":6895,\"journal\":{\"name\":\"Acta Crystallographica Section D: Biological Crystallography\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Crystallographica Section D: Biological Crystallography\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1107/S1399004715015722\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section D: Biological Crystallography","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1107/S1399004715015722","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
摘要
虽然许多微生物紫红质的晶体结构已经被解决,但具有足够分辨率来识别功能水分子的方法非常有限。本研究采用大肠杆菌无细胞膜蛋白生产法,大规模合成了从海藻a . Acetabularia rhodopsin I (ARI)蛋白,并以1.52-1.80 Å的分辨率测定了ARI蛋白的晶体结构,其分辨率仅次于细菌视紫红质(BR)。对ARI光化学性质的测试表明ARI的光循环比BR慢,其质子转移反应也不同于BR。在目前的结构中,ARI的胞外侧存在一个含有大量水分子的大腔,这解释了Glu206(ARI)的pKa相对较低,在任何ph值下都不能作为初始质子释放残基。细胞质侧的Leu97(ARI)和Tyr221(ARI)之间存在螺旋间氢键,促进了缓慢的光循环,并调节了Asp100(ARI)的pKa,后者是潜在的希夫碱质子供体,处于暗态。
Structural basis for the slow photocycle and late proton release in Acetabularia rhodopsin I from the marine plant Acetabularia acetabulum.
Although many crystal structures of microbial rhodopsins have been solved, those with sufficient resolution to identify the functional water molecules are very limited. In this study, the Acetabularia rhodopsin I (ARI) protein derived from the marine alga A. acetabulum was synthesized on a large scale by the Escherichia coli cell-free membrane-protein production method, and crystal structures of ARI were determined at the second highest (1.52-1.80 Å) resolution for a microbial rhodopsin, following bacteriorhodopsin (BR). Examinations of the photochemical properties of ARI revealed that the photocycle of ARI is slower than that of BR and that its proton-transfer reactions are different from those of BR. In the present structures, a large cavity containing numerous water molecules exists on the extracellular side of ARI, explaining the relatively low pKa of Glu206(ARI), which cannot function as an initial proton-releasing residue at any pH. An interhelical hydrogen bond exists between Leu97(ARI) and Tyr221(ARI) on the cytoplasmic side, which facilitates the slow photocycle and regulates the pKa of Asp100(ARI), a potential proton donor to the Schiff base, in the dark state.
期刊介绍:
Acta Crystallographica Section D welcomes the submission of articles covering any aspect of structural biology, with a particular emphasis on the structures of biological macromolecules or the methods used to determine them.
Reports on new structures of biological importance may address the smallest macromolecules to the largest complex molecular machines. These structures may have been determined using any structural biology technique including crystallography, NMR, cryoEM and/or other techniques. The key criterion is that such articles must present significant new insights into biological, chemical or medical sciences. The inclusion of complementary data that support the conclusions drawn from the structural studies (such as binding studies, mass spectrometry, enzyme assays, or analysis of mutants or other modified forms of biological macromolecule) is encouraged.
Methods articles may include new approaches to any aspect of biological structure determination or structure analysis but will only be accepted where they focus on new methods that are demonstrated to be of general applicability and importance to structural biology. Articles describing particularly difficult problems in structural biology are also welcomed, if the analysis would provide useful insights to others facing similar problems.