海报:智能手机的控制流完整性

Lucas Davi, A. Dmitrienko, Manuel Egele, Thomas Fischer, Thorsten Holz, R. Hund, S. Nürnberger, A. Sadeghi
{"title":"海报:智能手机的控制流完整性","authors":"Lucas Davi, A. Dmitrienko, Manuel Egele, Thomas Fischer, Thorsten Holz, R. Hund, S. Nürnberger, A. Sadeghi","doi":"10.1145/2046707.2093484","DOIUrl":null,"url":null,"abstract":"Despite extensive research over the last two decades, runtime attacks on software are still prevalent. Recently, smartphones, of which millions are in use today, have become an attractive target for adversaries. However, existing solutions are either ad-hoc or limited in their effectiveness. In this poster, we present a general countermeasure against runtime attacks on smartphone platforms. Our approach makes use of control-flow integrity (CFI), and tackles unique challenges of the ARM architecture and smartphone platforms. Our framework and implementation is efficient, since it requires no access to source code, performs CFI enforcement on-the-fly during runtime, and is compatible to memory randomization and code signing/encryption. We chose Apple iPhone for our reference implementation, because it has become an attractive target for runtime attacks. Our performance evaluation on a real iOS device demonstrates that our implementation does not induce any notable overhead when applied to popular iOS applications.","PeriodicalId":72687,"journal":{"name":"Conference on Computer and Communications Security : proceedings of the ... conference on computer and communications security. ACM Conference on Computer and Communications Security","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Poster: control-flow integrity for smartphones\",\"authors\":\"Lucas Davi, A. Dmitrienko, Manuel Egele, Thomas Fischer, Thorsten Holz, R. Hund, S. Nürnberger, A. Sadeghi\",\"doi\":\"10.1145/2046707.2093484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite extensive research over the last two decades, runtime attacks on software are still prevalent. Recently, smartphones, of which millions are in use today, have become an attractive target for adversaries. However, existing solutions are either ad-hoc or limited in their effectiveness. In this poster, we present a general countermeasure against runtime attacks on smartphone platforms. Our approach makes use of control-flow integrity (CFI), and tackles unique challenges of the ARM architecture and smartphone platforms. Our framework and implementation is efficient, since it requires no access to source code, performs CFI enforcement on-the-fly during runtime, and is compatible to memory randomization and code signing/encryption. We chose Apple iPhone for our reference implementation, because it has become an attractive target for runtime attacks. Our performance evaluation on a real iOS device demonstrates that our implementation does not induce any notable overhead when applied to popular iOS applications.\",\"PeriodicalId\":72687,\"journal\":{\"name\":\"Conference on Computer and Communications Security : proceedings of the ... conference on computer and communications security. ACM Conference on Computer and Communications Security\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Computer and Communications Security : proceedings of the ... conference on computer and communications security. ACM Conference on Computer and Communications Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2046707.2093484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Computer and Communications Security : proceedings of the ... conference on computer and communications security. ACM Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2046707.2093484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

尽管在过去的二十年里进行了广泛的研究,但对软件的运行时攻击仍然很普遍。最近,智能手机(如今有数百万人在使用)已成为对手的一个有吸引力的目标。然而,现有的解决方案要么是临时的,要么有效性有限。在这张海报中,我们提出了针对智能手机平台运行时攻击的一般对策。我们的方法利用了控制流完整性(CFI),并解决了ARM架构和智能手机平台的独特挑战。我们的框架和实现是高效的,因为它不需要访问源代码,在运行时动态执行CFI强制,并且与内存随机化和代码签名/加密兼容。我们选择Apple iPhone作为参考实现,因为它已经成为运行时攻击的一个有吸引力的目标。我们在真实iOS设备上的性能评估表明,当应用于流行的iOS应用程序时,我们的实现不会引起任何显著的开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Poster: control-flow integrity for smartphones
Despite extensive research over the last two decades, runtime attacks on software are still prevalent. Recently, smartphones, of which millions are in use today, have become an attractive target for adversaries. However, existing solutions are either ad-hoc or limited in their effectiveness. In this poster, we present a general countermeasure against runtime attacks on smartphone platforms. Our approach makes use of control-flow integrity (CFI), and tackles unique challenges of the ARM architecture and smartphone platforms. Our framework and implementation is efficient, since it requires no access to source code, performs CFI enforcement on-the-fly during runtime, and is compatible to memory randomization and code signing/encryption. We chose Apple iPhone for our reference implementation, because it has become an attractive target for runtime attacks. Our performance evaluation on a real iOS device demonstrates that our implementation does not induce any notable overhead when applied to popular iOS applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.20
自引率
0.00%
发文量
0
期刊最新文献
WristPrint: Characterizing User Re-identification Risks from Wrist-worn Accelerometry Data. CCS '21: 2021 ACM SIGSAC Conference on Computer and Communications Security, Virtual Event, Republic of Korea, November 15 - 19, 2021 WAHC '21: Proceedings of the 9th on Workshop on Encrypted Computing & Applied Homomorphic Cryptography, Virtual Event, Korea, 15 November 2021 Incremental Learning Algorithm of Data Complexity Based on KNN Classifier How to Accurately and Privately Identify Anomalies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1