{"title":"面向大时间数据集的可视化探索","authors":"Mohammed Ali, Mark W. Jones, Xianghua Xie, Mark Williams","doi":"10.1109/BDVA.2018.8534025","DOIUrl":null,"url":null,"abstract":"We address the problem of visualizing and interacting with large multi-dimensional time- series data. We propose a visual analytics system and approach which aims to visualize, analyze, present and enable exploration of large temporal datasets. Our approach consists of three main stages which are preprocessing, dimensionality reduction, and visual exploration. It assists with finding the interesting features in the data which are often obscured in the line chart because of the visual compression that is required to render the large dataset to screen. Our approach helps to obtain an overview of the entire dataset and track changes over time. It enables the user to detect clusters and outliers and observe the transitions between data. The juxtaposed views are used to visualize and interact both with raw time series data and projected data. Different time series datasets are deployed on our system, and we demonstrate the utility and evaluate the results using a case study with two different datasets which show the effectiveness of our system.","PeriodicalId":92742,"journal":{"name":"2018 International Symposium on Big Data Visual and Immersive Analytics (BDVA) : Konstanz, Germany, October 17 -19, 2018. IEEE International Symposium on Big Data Visual and Immersive Analytics (4th : 2018 : Konstanz, Germany)","volume":"82 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Towards Visual Exploration of Large Temporal Datasets\",\"authors\":\"Mohammed Ali, Mark W. Jones, Xianghua Xie, Mark Williams\",\"doi\":\"10.1109/BDVA.2018.8534025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of visualizing and interacting with large multi-dimensional time- series data. We propose a visual analytics system and approach which aims to visualize, analyze, present and enable exploration of large temporal datasets. Our approach consists of three main stages which are preprocessing, dimensionality reduction, and visual exploration. It assists with finding the interesting features in the data which are often obscured in the line chart because of the visual compression that is required to render the large dataset to screen. Our approach helps to obtain an overview of the entire dataset and track changes over time. It enables the user to detect clusters and outliers and observe the transitions between data. The juxtaposed views are used to visualize and interact both with raw time series data and projected data. Different time series datasets are deployed on our system, and we demonstrate the utility and evaluate the results using a case study with two different datasets which show the effectiveness of our system.\",\"PeriodicalId\":92742,\"journal\":{\"name\":\"2018 International Symposium on Big Data Visual and Immersive Analytics (BDVA) : Konstanz, Germany, October 17 -19, 2018. IEEE International Symposium on Big Data Visual and Immersive Analytics (4th : 2018 : Konstanz, Germany)\",\"volume\":\"82 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Symposium on Big Data Visual and Immersive Analytics (BDVA) : Konstanz, Germany, October 17 -19, 2018. IEEE International Symposium on Big Data Visual and Immersive Analytics (4th : 2018 : Konstanz, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BDVA.2018.8534025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Symposium on Big Data Visual and Immersive Analytics (BDVA) : Konstanz, Germany, October 17 -19, 2018. IEEE International Symposium on Big Data Visual and Immersive Analytics (4th : 2018 : Konstanz, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BDVA.2018.8534025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们解决了大型多维时间序列数据的可视化和交互问题。我们提出了一种可视化分析系统和方法,旨在对大型时间数据集进行可视化、分析、呈现和探索。我们的方法包括预处理、降维和视觉探索三个主要阶段。它有助于发现数据中有趣的特征,这些特征通常在折线图中被掩盖,因为将大型数据集呈现到屏幕上需要进行视觉压缩。我们的方法有助于获得整个数据集的概览,并跟踪随时间的变化。它使用户能够检测集群和异常值,并观察数据之间的转换。并置视图用于对原始时间序列数据和投影数据进行可视化和交互。在我们的系统上部署了不同的时间序列数据集,我们使用两个不同数据集的案例研究来演示实用性并评估结果,以显示我们系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards Visual Exploration of Large Temporal Datasets
We address the problem of visualizing and interacting with large multi-dimensional time- series data. We propose a visual analytics system and approach which aims to visualize, analyze, present and enable exploration of large temporal datasets. Our approach consists of three main stages which are preprocessing, dimensionality reduction, and visual exploration. It assists with finding the interesting features in the data which are often obscured in the line chart because of the visual compression that is required to render the large dataset to screen. Our approach helps to obtain an overview of the entire dataset and track changes over time. It enables the user to detect clusters and outliers and observe the transitions between data. The juxtaposed views are used to visualize and interact both with raw time series data and projected data. Different time series datasets are deployed on our system, and we demonstrate the utility and evaluate the results using a case study with two different datasets which show the effectiveness of our system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Collaborative Immersive Analytics Multisensory Immersive Analytics Immersive Analytics Applications in Life and Health Sciences Immersive Analytics: An Introduction Immersive Human-Centered Computational Analytics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1