衡量期望形成中的反应不足和反应过度

S. Kucinskas, Florian S. Peters
{"title":"衡量期望形成中的反应不足和反应过度","authors":"S. Kucinskas, Florian S. Peters","doi":"10.2139/ssrn.3188065","DOIUrl":null,"url":null,"abstract":"\n We develop a framework for measuring under- and overreaction in expectation formation. The basic insight is that under- and overreaction to new information is identified (up to sign) by the impulse response function of forecast errors. Our measurement procedure yields estimates of under- and overreaction to different shocks at various horizons. In an application to inflation expectations, we find that forecasters underreact to aggregate shocks but overreact to idiosyncratic shocks. We illustrate how our approach can be used to (i) quantify the importance of different biases; (ii) estimate theoretical models; and (iii) shed light on existing empirical approaches and puzzles.","PeriodicalId":8731,"journal":{"name":"Behavioral & Experimental Finance eJournal","volume":"2 3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Measuring Under- and Overreaction in Expectation Formation\",\"authors\":\"S. Kucinskas, Florian S. Peters\",\"doi\":\"10.2139/ssrn.3188065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We develop a framework for measuring under- and overreaction in expectation formation. The basic insight is that under- and overreaction to new information is identified (up to sign) by the impulse response function of forecast errors. Our measurement procedure yields estimates of under- and overreaction to different shocks at various horizons. In an application to inflation expectations, we find that forecasters underreact to aggregate shocks but overreact to idiosyncratic shocks. We illustrate how our approach can be used to (i) quantify the importance of different biases; (ii) estimate theoretical models; and (iii) shed light on existing empirical approaches and puzzles.\",\"PeriodicalId\":8731,\"journal\":{\"name\":\"Behavioral & Experimental Finance eJournal\",\"volume\":\"2 3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavioral & Experimental Finance eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3188065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioral & Experimental Finance eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3188065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

我们开发了一个衡量期望形成中的反应不足和反应过度的框架。基本观点是,对新信息的反应不足和反应过度是由预测误差的脉冲响应函数来识别的(直到符号)。我们的测量程序产生了对不同视界上不同冲击的反应不足和反应过度的估计。在对通胀预期的应用中,我们发现预测者对总体冲击反应不足,但对特殊冲击反应过度。我们说明了如何使用我们的方法来(i)量化不同偏差的重要性;(ii)估计理论模型;(三)阐明现有的实证方法和困惑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Measuring Under- and Overreaction in Expectation Formation
We develop a framework for measuring under- and overreaction in expectation formation. The basic insight is that under- and overreaction to new information is identified (up to sign) by the impulse response function of forecast errors. Our measurement procedure yields estimates of under- and overreaction to different shocks at various horizons. In an application to inflation expectations, we find that forecasters underreact to aggregate shocks but overreact to idiosyncratic shocks. We illustrate how our approach can be used to (i) quantify the importance of different biases; (ii) estimate theoretical models; and (iii) shed light on existing empirical approaches and puzzles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Does Religious Diversity Play Roles in Corporate Environmental Decisions? Distrust or Speculation? The Socioeconomic Drivers of U.S. Cryptocurrency Investments The Efficient Horizon of Expectation and Stock Prices Being Present: The Influence of Mindfulness on Financial Decisions Algorithmic Trading in Experimental Markets with Human Traders: A Literature Survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1