Faudree-Lehel猜想的推广对随机图几乎成立

IF 0.9 3区 数学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING Random Structures & Algorithms Pub Date : 2021-11-07 DOI:10.1002/rsa.21058
J. Przybylo
{"title":"Faudree-Lehel猜想的推广对随机图几乎成立","authors":"J. Przybylo","doi":"10.1002/rsa.21058","DOIUrl":null,"url":null,"abstract":"The irregularity strength of a simple graph G=(V,E) , denoted s(G) is a certain measure of the level of irregularity of a graph. It indicates how hard it is to make an irregular multigraph of G via multiplication of its selected edges. It is however more commonly set forth through k‐weightings, that is, mappings ω:E→{1,2,…,k} , assigning every vertex v∈V the weighted degree σ(v):=∑e∋vω(e) . In this setting, s(G) is precisely defined as the least k admitting a k‐weighting of G which attributes pairwise distinct weighted degrees to all vertices of G. It is known that s(G)>n/d in the case of d‐regular graphs with order n and d>1 . An open conjecture of Faudree and Lehel from the 1980s states that s(G)≤n/d+c in turn for some finite constant c independent of d. It is believed that the natural strengthening of this conjecture toward all graphs where d is substituted by the minimum degree δ should also hold. We confirm this supposition in the case of random graphs. Namely, we show that asymptotically almost surely the generalization of Faudree‐Lehel Conjecture holds for a random graph G∈𝒢(n,p) for any constant p, that is, that s(G) takes one of the three values: ⌈n/δ⌉ , ⌈n/δ⌉+1 , or ⌈n/δ⌉+2 . This is implied by the fact that a.a.s. p−1","PeriodicalId":54523,"journal":{"name":"Random Structures & Algorithms","volume":"5 1","pages":"383 - 396"},"PeriodicalIF":0.9000,"publicationDate":"2021-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A generalization of Faudree–Lehel conjecture holds almost surely for random graphs\",\"authors\":\"J. Przybylo\",\"doi\":\"10.1002/rsa.21058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The irregularity strength of a simple graph G=(V,E) , denoted s(G) is a certain measure of the level of irregularity of a graph. It indicates how hard it is to make an irregular multigraph of G via multiplication of its selected edges. It is however more commonly set forth through k‐weightings, that is, mappings ω:E→{1,2,…,k} , assigning every vertex v∈V the weighted degree σ(v):=∑e∋vω(e) . In this setting, s(G) is precisely defined as the least k admitting a k‐weighting of G which attributes pairwise distinct weighted degrees to all vertices of G. It is known that s(G)>n/d in the case of d‐regular graphs with order n and d>1 . An open conjecture of Faudree and Lehel from the 1980s states that s(G)≤n/d+c in turn for some finite constant c independent of d. It is believed that the natural strengthening of this conjecture toward all graphs where d is substituted by the minimum degree δ should also hold. We confirm this supposition in the case of random graphs. Namely, we show that asymptotically almost surely the generalization of Faudree‐Lehel Conjecture holds for a random graph G∈𝒢(n,p) for any constant p, that is, that s(G) takes one of the three values: ⌈n/δ⌉ , ⌈n/δ⌉+1 , or ⌈n/δ⌉+2 . This is implied by the fact that a.a.s. p−1\",\"PeriodicalId\":54523,\"journal\":{\"name\":\"Random Structures & Algorithms\",\"volume\":\"5 1\",\"pages\":\"383 - 396\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Structures & Algorithms\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/rsa.21058\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Structures & Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/rsa.21058","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 1

摘要

简单图G=(V,E)的不规则强度,记为s(G),是对图不规则程度的一定度量。它表示通过对G的选定边进行乘法来生成不规则多图的难度。然而,它通常是通过k‐加权来表达的,即映射ω:E→{1,2,…,k},赋予每个顶点v∈v加权度σ(v):=∑E, vω(E)。在这种情况下,s(G)被精确地定义为允许k -加权G的最小k,该k -加权G对G的所有顶点赋予了成对不同的加权度。已知对于n阶且d>1的d -正则图,s(G)>n/d。20世纪80年代Faudree和Lehel的一个开放猜想表明s(G)≤n/d+c,对于一些有限常数c独立于d。我们相信这个猜想对所有图的自然强化也应该成立,其中d被最小度δ代替。我们在随机图的情况下证实了这个假设。也就是说,我们渐近地几乎肯定地证明了Faudree - Lehel猜想的推广对于任意常数p的随机图G∈𝒢(n,p)成立,即s(G)取三个值之一:≤≤n/δ≠、≤≤n/δ≠+1或≤≤n/δ≠+2。这是由a.a.s. p−1这一事实所暗示的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A generalization of Faudree–Lehel conjecture holds almost surely for random graphs
The irregularity strength of a simple graph G=(V,E) , denoted s(G) is a certain measure of the level of irregularity of a graph. It indicates how hard it is to make an irregular multigraph of G via multiplication of its selected edges. It is however more commonly set forth through k‐weightings, that is, mappings ω:E→{1,2,…,k} , assigning every vertex v∈V the weighted degree σ(v):=∑e∋vω(e) . In this setting, s(G) is precisely defined as the least k admitting a k‐weighting of G which attributes pairwise distinct weighted degrees to all vertices of G. It is known that s(G)>n/d in the case of d‐regular graphs with order n and d>1 . An open conjecture of Faudree and Lehel from the 1980s states that s(G)≤n/d+c in turn for some finite constant c independent of d. It is believed that the natural strengthening of this conjecture toward all graphs where d is substituted by the minimum degree δ should also hold. We confirm this supposition in the case of random graphs. Namely, we show that asymptotically almost surely the generalization of Faudree‐Lehel Conjecture holds for a random graph G∈𝒢(n,p) for any constant p, that is, that s(G) takes one of the three values: ⌈n/δ⌉ , ⌈n/δ⌉+1 , or ⌈n/δ⌉+2 . This is implied by the fact that a.a.s. p−1
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Random Structures & Algorithms
Random Structures & Algorithms 数学-计算机:软件工程
CiteScore
2.50
自引率
10.00%
发文量
56
审稿时长
>12 weeks
期刊介绍: It is the aim of this journal to meet two main objectives: to cover the latest research on discrete random structures, and to present applications of such research to problems in combinatorics and computer science. The goal is to provide a natural home for a significant body of current research, and a useful forum for ideas on future studies in randomness. Results concerning random graphs, hypergraphs, matroids, trees, mappings, permutations, matrices, sets and orders, as well as stochastic graph processes and networks are presented with particular emphasis on the use of probabilistic methods in combinatorics as developed by Paul Erdõs. The journal focuses on probabilistic algorithms, average case analysis of deterministic algorithms, and applications of probabilistic methods to cryptography, data structures, searching and sorting. The journal also devotes space to such areas of probability theory as percolation, random walks and combinatorial aspects of probability.
期刊最新文献
Sharp thresholds in adaptive random graph processes The number of descendants in a random directed acyclic graph Counting orientations of random graphs with no directed k‐cycles Prominent examples of flip processes Defective coloring of hypergraphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1