一类极值估计的拟似然比检验的非参数自举的渐近改进

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2016-02-04 DOI:10.1111/ectj.12060
Lorenzo Camponovo
{"title":"一类极值估计的拟似然比检验的非参数自举的渐近改进","authors":"Lorenzo Camponovo","doi":"10.1111/ectj.12060","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We study the asymptotic refinements of nonparametric bootstrap for quasi-likelihood ratio type tests of nonlinear restrictions. The bootstrap method applies to extremum estimators, such as quasi-maximum likelihood and generalized method of moments estimators, among others. Unlike existing parametric bootstrap procedures for quasi-likelihood ratio type tests, this bootstrap approach does not require any specific parametric assumption on the data distribution, and constructs the bootstrap samples in a fully nonparametric way. We derive the higher-order improvements of the nonparametric bootstrap compared to procedures based on standard first-order asymptotic theory. We show that the magnitude of these improvements is the same as those of parametric bootstrap procedures currently proposed in the literature. Monte Carlo simulations confirm the reliability and accuracy of the nonparametric bootstrap.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2016-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/ectj.12060","citationCount":"1","resultStr":"{\"title\":\"Asymptotic refinements of nonparametric bootstrap for quasi-likelihood ratio tests for classes of extremum estimators\",\"authors\":\"Lorenzo Camponovo\",\"doi\":\"10.1111/ectj.12060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>We study the asymptotic refinements of nonparametric bootstrap for quasi-likelihood ratio type tests of nonlinear restrictions. The bootstrap method applies to extremum estimators, such as quasi-maximum likelihood and generalized method of moments estimators, among others. Unlike existing parametric bootstrap procedures for quasi-likelihood ratio type tests, this bootstrap approach does not require any specific parametric assumption on the data distribution, and constructs the bootstrap samples in a fully nonparametric way. We derive the higher-order improvements of the nonparametric bootstrap compared to procedures based on standard first-order asymptotic theory. We show that the magnitude of these improvements is the same as those of parametric bootstrap procedures currently proposed in the literature. Monte Carlo simulations confirm the reliability and accuracy of the nonparametric bootstrap.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2016-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/ectj.12060\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ectj.12060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ectj.12060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

摘要

研究了非线性约束的拟似然比型检验的非参数自举的渐近改进。自举法适用于极值估计,如拟极大似然估计和广义矩估计等。与现有的准似然比类型检验的参数自举方法不同,这种自举方法不需要对数据分布进行任何特定的参数假设,并且以完全非参数的方式构建自举样本。与基于标准一阶渐近理论的方法相比,我们得到了非参数自举的高阶改进。我们表明,这些改进的幅度与文献中目前提出的参数自举过程相同。蒙特卡罗仿真验证了该方法的可靠性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Asymptotic refinements of nonparametric bootstrap for quasi-likelihood ratio tests for classes of extremum estimators

We study the asymptotic refinements of nonparametric bootstrap for quasi-likelihood ratio type tests of nonlinear restrictions. The bootstrap method applies to extremum estimators, such as quasi-maximum likelihood and generalized method of moments estimators, among others. Unlike existing parametric bootstrap procedures for quasi-likelihood ratio type tests, this bootstrap approach does not require any specific parametric assumption on the data distribution, and constructs the bootstrap samples in a fully nonparametric way. We derive the higher-order improvements of the nonparametric bootstrap compared to procedures based on standard first-order asymptotic theory. We show that the magnitude of these improvements is the same as those of parametric bootstrap procedures currently proposed in the literature. Monte Carlo simulations confirm the reliability and accuracy of the nonparametric bootstrap.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1