Zhongde Dai, Gøril Flatberg, H. Preisig, Liyuan Deng
{"title":"紫外可见光谱法研究Fenton氧化反应动力学","authors":"Zhongde Dai, Gøril Flatberg, H. Preisig, Liyuan Deng","doi":"10.5923/J.JLCE.20180605.01","DOIUrl":null,"url":null,"abstract":"Chemical reaction engineering is one of the core courses for chemical engineering students. Laboratory exercise is an essential part of this course. The goal of this laboratory exercise is to demonstrate the possibility of using an in-situ spectroscopic method (UV-VIS spectroscopy) to investigate reaction kinetics. A solution of naphthol blue black (NBB) is oxidized by H2O2 through a Fenton oxidation process. In this exercise, the concentration of NBB was monitored by the UV-VIS spectroscopy, while the concentrations of H2O2, FeSO4 and different pH levels may be adjusted to enable students to obtain a wide range of reaction kinetic data. The reaction rate constant, kapp, can be estimated with a pseudo-first-order kinetic model. In addition, the reaction temperature was adjusted to investigate the decomposition activation energy (Ea), which exhibited a value of 56.0±7 kJ mol-1.","PeriodicalId":91121,"journal":{"name":"Journal of laboratory chemical education","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Kinetic Studies of Fenton Oxidation Reaction by UV-VIS Spectroscopy\",\"authors\":\"Zhongde Dai, Gøril Flatberg, H. Preisig, Liyuan Deng\",\"doi\":\"10.5923/J.JLCE.20180605.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chemical reaction engineering is one of the core courses for chemical engineering students. Laboratory exercise is an essential part of this course. The goal of this laboratory exercise is to demonstrate the possibility of using an in-situ spectroscopic method (UV-VIS spectroscopy) to investigate reaction kinetics. A solution of naphthol blue black (NBB) is oxidized by H2O2 through a Fenton oxidation process. In this exercise, the concentration of NBB was monitored by the UV-VIS spectroscopy, while the concentrations of H2O2, FeSO4 and different pH levels may be adjusted to enable students to obtain a wide range of reaction kinetic data. The reaction rate constant, kapp, can be estimated with a pseudo-first-order kinetic model. In addition, the reaction temperature was adjusted to investigate the decomposition activation energy (Ea), which exhibited a value of 56.0±7 kJ mol-1.\",\"PeriodicalId\":91121,\"journal\":{\"name\":\"Journal of laboratory chemical education\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of laboratory chemical education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5923/J.JLCE.20180605.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of laboratory chemical education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5923/J.JLCE.20180605.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Kinetic Studies of Fenton Oxidation Reaction by UV-VIS Spectroscopy
Chemical reaction engineering is one of the core courses for chemical engineering students. Laboratory exercise is an essential part of this course. The goal of this laboratory exercise is to demonstrate the possibility of using an in-situ spectroscopic method (UV-VIS spectroscopy) to investigate reaction kinetics. A solution of naphthol blue black (NBB) is oxidized by H2O2 through a Fenton oxidation process. In this exercise, the concentration of NBB was monitored by the UV-VIS spectroscopy, while the concentrations of H2O2, FeSO4 and different pH levels may be adjusted to enable students to obtain a wide range of reaction kinetic data. The reaction rate constant, kapp, can be estimated with a pseudo-first-order kinetic model. In addition, the reaction temperature was adjusted to investigate the decomposition activation energy (Ea), which exhibited a value of 56.0±7 kJ mol-1.