交叉积惩罚稀疏解的高效迭代重加权LASSO算法

D. Luengo, J. Vía, T. Trigano
{"title":"交叉积惩罚稀疏解的高效迭代重加权LASSO算法","authors":"D. Luengo, J. Vía, T. Trigano","doi":"10.23919/Eusipco47968.2020.9287804","DOIUrl":null,"url":null,"abstract":"In this paper, we describe an efficient iterative algorithm for finding sparse solutions to a linear system. Apart from the well-known L1 norm regularization, we introduce an additional cost term promoting solutions without too-close activations. This additional term, which is expressed as a sum of cross-products of absolute values, makes the problem non-convex and difficult to solve. However, the application of the successive convex approximations approach allows us to obtain an efficient algorithm consisting in the solution of a sequence of iteratively reweighted LASSO problems. Numerical simulations on randomly generated waveforms and ECG signals show the good performance of the proposed method.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"15 1","pages":"2045-2049"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Efficient Iteratively Reweighted LASSO Algorithm for Cross-Products Penalized Sparse Solutions\",\"authors\":\"D. Luengo, J. Vía, T. Trigano\",\"doi\":\"10.23919/Eusipco47968.2020.9287804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we describe an efficient iterative algorithm for finding sparse solutions to a linear system. Apart from the well-known L1 norm regularization, we introduce an additional cost term promoting solutions without too-close activations. This additional term, which is expressed as a sum of cross-products of absolute values, makes the problem non-convex and difficult to solve. However, the application of the successive convex approximations approach allows us to obtain an efficient algorithm consisting in the solution of a sequence of iteratively reweighted LASSO problems. Numerical simulations on randomly generated waveforms and ECG signals show the good performance of the proposed method.\",\"PeriodicalId\":6705,\"journal\":{\"name\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"15 1\",\"pages\":\"2045-2049\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/Eusipco47968.2020.9287804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文描述了一种求解线性系统稀疏解的有效迭代算法。除了众所周知的L1范数正则化之外,我们还引入了一个额外的代价项来促进没有过于接近激活的解决方案。这个额外的项,被表示为绝对值的外积的和,使得问题非凸且难以解决。然而,连续凸近似方法的应用使我们能够得到一种有效的算法,该算法由一系列迭代重加权LASSO问题的解组成。对随机波形和心电信号的数值仿真表明了该方法的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient Iteratively Reweighted LASSO Algorithm for Cross-Products Penalized Sparse Solutions
In this paper, we describe an efficient iterative algorithm for finding sparse solutions to a linear system. Apart from the well-known L1 norm regularization, we introduce an additional cost term promoting solutions without too-close activations. This additional term, which is expressed as a sum of cross-products of absolute values, makes the problem non-convex and difficult to solve. However, the application of the successive convex approximations approach allows us to obtain an efficient algorithm consisting in the solution of a sequence of iteratively reweighted LASSO problems. Numerical simulations on randomly generated waveforms and ECG signals show the good performance of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Eusipco 2021 Cover Page A graph-theoretic sensor-selection scheme for covariance-based Motor Imagery (MI) decoding Hidden Markov Model Based Data-driven Calibration of Non-dispersive Infrared Gas Sensor Deep Transform Learning for Multi-Sensor Fusion Two Stages Parallel LMS Structure: A Pipelined Hardware Architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1