基于特征的产品开发中非均匀参数研究和机器学习辅助的智能设计预测

Satchit Ramnath, Jiachen Ma, J. Shah, D. Detwiler
{"title":"基于特征的产品开发中非均匀参数研究和机器学习辅助的智能设计预测","authors":"Satchit Ramnath, Jiachen Ma, J. Shah, D. Detwiler","doi":"10.1115/detc2021-67923","DOIUrl":null,"url":null,"abstract":"\n Automotive body structure design is critical to achieve lightweight and crash worthiness based on engineers’ experience. In the current design process, it frequently occurs that designers use a previous generation design to evolve the latest designs to meet certain targets. However, in this process the possibility of adapting design ideas from other models is unlikely. The uniqueness of each design and presence of non-uniform parameters further makes it difficult to compare two or more designs and extract useful feature information. There is a need for a method that will fill the missing gap in assisting designers with better design options. This paper aims to fill this gap by introducing an innovative approach to use a non-uniform parametric study with machine learning in order to make valuable suggestions to the designer. The proposed method uses data sets produced from experiment design to reduce the number of parameters, perform parameter correlation studies and run finite element analysis (FEA), for a given set of loads. The response data generated from this FEA is then used in a machine learning algorithm to make predictions on the ideal features to be used in the design. The method can be applied to any component that has a feature-based parametric design.","PeriodicalId":23602,"journal":{"name":"Volume 2: 41st Computers and Information in Engineering Conference (CIE)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Intelligent Design Prediction Aided by Non-Uniform Parametric Study and Machine Learning in Feature Based Product Development\",\"authors\":\"Satchit Ramnath, Jiachen Ma, J. Shah, D. Detwiler\",\"doi\":\"10.1115/detc2021-67923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Automotive body structure design is critical to achieve lightweight and crash worthiness based on engineers’ experience. In the current design process, it frequently occurs that designers use a previous generation design to evolve the latest designs to meet certain targets. However, in this process the possibility of adapting design ideas from other models is unlikely. The uniqueness of each design and presence of non-uniform parameters further makes it difficult to compare two or more designs and extract useful feature information. There is a need for a method that will fill the missing gap in assisting designers with better design options. This paper aims to fill this gap by introducing an innovative approach to use a non-uniform parametric study with machine learning in order to make valuable suggestions to the designer. The proposed method uses data sets produced from experiment design to reduce the number of parameters, perform parameter correlation studies and run finite element analysis (FEA), for a given set of loads. The response data generated from this FEA is then used in a machine learning algorithm to make predictions on the ideal features to be used in the design. The method can be applied to any component that has a feature-based parametric design.\",\"PeriodicalId\":23602,\"journal\":{\"name\":\"Volume 2: 41st Computers and Information in Engineering Conference (CIE)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: 41st Computers and Information in Engineering Conference (CIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2021-67923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: 41st Computers and Information in Engineering Conference (CIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2021-67923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

根据工程师的经验,车身结构设计是实现汽车轻量化和耐撞性的关键。在当前的设计过程中,经常发生设计师使用上一代设计来发展最新设计以满足某些目标的情况。然而,在这个过程中,不太可能从其他模型中借鉴设计理念。每个设计的唯一性和非均匀参数的存在使得比较两个或多个设计和提取有用的特征信息变得更加困难。我们需要一种方法来填补缺失的空白,帮助设计师做出更好的设计选择。本文旨在通过引入一种创新的方法来填补这一空白,该方法将非均匀参数研究与机器学习结合起来,以便为设计师提供有价值的建议。所提出的方法使用实验设计产生的数据集来减少参数数量,进行参数相关性研究并对给定的一组负载进行有限元分析(FEA)。从该有限元分析中生成的响应数据然后用于机器学习算法,以对设计中使用的理想特征进行预测。该方法可应用于任何具有基于特征的参数化设计的部件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intelligent Design Prediction Aided by Non-Uniform Parametric Study and Machine Learning in Feature Based Product Development
Automotive body structure design is critical to achieve lightweight and crash worthiness based on engineers’ experience. In the current design process, it frequently occurs that designers use a previous generation design to evolve the latest designs to meet certain targets. However, in this process the possibility of adapting design ideas from other models is unlikely. The uniqueness of each design and presence of non-uniform parameters further makes it difficult to compare two or more designs and extract useful feature information. There is a need for a method that will fill the missing gap in assisting designers with better design options. This paper aims to fill this gap by introducing an innovative approach to use a non-uniform parametric study with machine learning in order to make valuable suggestions to the designer. The proposed method uses data sets produced from experiment design to reduce the number of parameters, perform parameter correlation studies and run finite element analysis (FEA), for a given set of loads. The response data generated from this FEA is then used in a machine learning algorithm to make predictions on the ideal features to be used in the design. The method can be applied to any component that has a feature-based parametric design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Bus Factor in Conceptual System Design: Protecting a Design Process Against Major Regional and World Events Exploration of the Digital Innovation Process in the Smart Product-Service System Optimized Torque Assistance During Walking With an Idealized Hip Exoskeleton An Algorithm for Partitioning Objects Into a Cube Skeleton and Segmented Shell Covers for Parallelized Additive Manufacturing Neurocognitive Effects of Incentivizing Students to Improve Performance Through Repeat Attempts in Design Settings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1