基于深度发散的聚类

Michael C. Kampffmeyer, Sigurd Løkse, F. Bianchi, L. Livi, A. Salberg, R. Jenssen
{"title":"基于深度发散的聚类","authors":"Michael C. Kampffmeyer, Sigurd Løkse, F. Bianchi, L. Livi, A. Salberg, R. Jenssen","doi":"10.1109/MLSP.2017.8168158","DOIUrl":null,"url":null,"abstract":"A promising direction in deep learning research is to learn representations and simultaneously discover cluster structure in unlabeled data by optimizing a discriminative loss function. Contrary to supervised deep learning, this line of research is in its infancy and the design and optimization of a suitable loss function with the aim of training deep neural networks for clustering is still an open challenge. In this paper, we propose to leverage the discriminative power of information theoretic divergence measures, which have experienced success in traditional clustering, to develop a new deep clustering network. Our proposed loss function incorporates explicitly the geometry of the output space, and facilitates fully unsupervised training end-to-end. Experiments on real datasets show that the proposed algorithm achieves competitive performance with respect to other state-of-the-art methods.","PeriodicalId":6542,"journal":{"name":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"7 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Deep divergence-based clustering\",\"authors\":\"Michael C. Kampffmeyer, Sigurd Løkse, F. Bianchi, L. Livi, A. Salberg, R. Jenssen\",\"doi\":\"10.1109/MLSP.2017.8168158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A promising direction in deep learning research is to learn representations and simultaneously discover cluster structure in unlabeled data by optimizing a discriminative loss function. Contrary to supervised deep learning, this line of research is in its infancy and the design and optimization of a suitable loss function with the aim of training deep neural networks for clustering is still an open challenge. In this paper, we propose to leverage the discriminative power of information theoretic divergence measures, which have experienced success in traditional clustering, to develop a new deep clustering network. Our proposed loss function incorporates explicitly the geometry of the output space, and facilitates fully unsupervised training end-to-end. Experiments on real datasets show that the proposed algorithm achieves competitive performance with respect to other state-of-the-art methods.\",\"PeriodicalId\":6542,\"journal\":{\"name\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"volume\":\"7 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2017.8168158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2017.8168158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

通过优化判别损失函数来学习表示并同时发现未标记数据中的聚类结构是深度学习研究的一个有前途的方向。与监督深度学习相反,这方面的研究还处于起步阶段,设计和优化一个合适的损失函数,以训练用于聚类的深度神经网络仍然是一个开放的挑战。在本文中,我们提出利用在传统聚类中取得成功的信息论发散测度的判别能力来开发一种新的深度聚类网络。我们提出的损失函数明确地结合了输出空间的几何形状,并促进了端到端的完全无监督训练。在实际数据集上的实验表明,该算法与其他最先进的方法相比具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep divergence-based clustering
A promising direction in deep learning research is to learn representations and simultaneously discover cluster structure in unlabeled data by optimizing a discriminative loss function. Contrary to supervised deep learning, this line of research is in its infancy and the design and optimization of a suitable loss function with the aim of training deep neural networks for clustering is still an open challenge. In this paper, we propose to leverage the discriminative power of information theoretic divergence measures, which have experienced success in traditional clustering, to develop a new deep clustering network. Our proposed loss function incorporates explicitly the geometry of the output space, and facilitates fully unsupervised training end-to-end. Experiments on real datasets show that the proposed algorithm achieves competitive performance with respect to other state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classical quadrature rules via Gaussian processes Does speech enhancement work with end-to-end ASR objectives?: Experimental analysis of multichannel end-to-end ASR Differential mutual information forward search for multi-kernel discriminant-component selection with an application to privacy-preserving classification Partitioning in signal processing using the object migration automaton and the pursuit paradigm Inferring room semantics using acoustic monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1