延迟增强MRI检测梗死心肌的纹理分析

A. Larroza, M. P. López-Lereu, J. Monmeneu, V. Bodí, D. Moratal
{"title":"延迟增强MRI检测梗死心肌的纹理分析","authors":"A. Larroza, M. P. López-Lereu, J. Monmeneu, V. Bodí, D. Moratal","doi":"10.1109/ISBI.2017.7950700","DOIUrl":null,"url":null,"abstract":"Detection of infarcted myocardium in the left ventricle is achieved with delayed enhancement magnetic resonance imaging (DE-MRI). However, manual segmentation is tedious and prone to variability. We studied three texture analysis methods (run-length matrix, co-occurrence matrix, and autoregressive model) in combination with histogram features to characterize the infarcted myocardium. We evaluated 10 patients with chronic infarction to select the most discriminative features and to train a support vector machine (SVM) classifier. The classifier model was then used to segment five human hearts from the STACOM DE-MRI challenge at MICCAI 2012. The Dice coefficient was used to compare the segmentation results with the ground truth available in the STACOM dataset. Segmentation using texture features provided good results with an overall Dice coefficient of 0.71 ± 0.12 (mean ± standard deviation).","PeriodicalId":6547,"journal":{"name":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","volume":"42 1","pages":"1066-1069"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Texture analysis for infarcted myocardium detection on delayed enhancement MRI\",\"authors\":\"A. Larroza, M. P. López-Lereu, J. Monmeneu, V. Bodí, D. Moratal\",\"doi\":\"10.1109/ISBI.2017.7950700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detection of infarcted myocardium in the left ventricle is achieved with delayed enhancement magnetic resonance imaging (DE-MRI). However, manual segmentation is tedious and prone to variability. We studied three texture analysis methods (run-length matrix, co-occurrence matrix, and autoregressive model) in combination with histogram features to characterize the infarcted myocardium. We evaluated 10 patients with chronic infarction to select the most discriminative features and to train a support vector machine (SVM) classifier. The classifier model was then used to segment five human hearts from the STACOM DE-MRI challenge at MICCAI 2012. The Dice coefficient was used to compare the segmentation results with the ground truth available in the STACOM dataset. Segmentation using texture features provided good results with an overall Dice coefficient of 0.71 ± 0.12 (mean ± standard deviation).\",\"PeriodicalId\":6547,\"journal\":{\"name\":\"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)\",\"volume\":\"42 1\",\"pages\":\"1066-1069\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2017.7950700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2017.7950700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

通过延迟增强磁共振成像(DE-MRI)检测左心室梗死心肌。然而,手工分割是乏味的,而且容易发生变化。我们研究了三种纹理分析方法(游程矩阵、共现矩阵和自回归模型)结合直方图特征来表征梗死心肌。我们评估了10例慢性梗死患者,以选择最具判别性的特征并训练支持向量机(SVM)分类器。随后,该分类器模型被用于在MICCAI 2012上分割来自STACOM DE-MRI挑战的五颗人类心脏。使用Dice系数将分割结果与STACOM数据集中可用的ground truth进行比较。纹理特征分割效果良好,总体Dice系数为0.71±0.12(均值±标准差)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Texture analysis for infarcted myocardium detection on delayed enhancement MRI
Detection of infarcted myocardium in the left ventricle is achieved with delayed enhancement magnetic resonance imaging (DE-MRI). However, manual segmentation is tedious and prone to variability. We studied three texture analysis methods (run-length matrix, co-occurrence matrix, and autoregressive model) in combination with histogram features to characterize the infarcted myocardium. We evaluated 10 patients with chronic infarction to select the most discriminative features and to train a support vector machine (SVM) classifier. The classifier model was then used to segment five human hearts from the STACOM DE-MRI challenge at MICCAI 2012. The Dice coefficient was used to compare the segmentation results with the ground truth available in the STACOM dataset. Segmentation using texture features provided good results with an overall Dice coefficient of 0.71 ± 0.12 (mean ± standard deviation).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification of adrenal lesions through spatial Bayesian modeling of GLCM Correction of partial volume effect in 99mTc-TRODAT-1 brain SPECT images using an edge-preserving weighted regularization Two-dimensional speckle tracking using parabolic polynomial expansion with Riesz transform Elastic registration of high-resolution 3D PLI data of the human brain Registration of ultra-high resolution 3D PLI data of human brain sections to their corresponding high-resolution counterpart
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1