任意簇大小的1均值和1中位数2聚类问题:复杂性和近似

Q3 Decision Sciences Yugoslav Journal of Operations Research Pub Date : 2022-01-01 DOI:10.2298/yjor211018008p
A. Pyatkin
{"title":"任意簇大小的1均值和1中位数2聚类问题:复杂性和近似","authors":"A. Pyatkin","doi":"10.2298/yjor211018008p","DOIUrl":null,"url":null,"abstract":"We consider the following 2-clustering problem. Given N points in Euclidean space, partition it into two subsets (clusters) so that the sum of squared distances between the elements of the clusters and their centers would be minimum. The center of the first cluster coincides with its centroid (mean) while the center of the second cluster should be chosen from the set of the initial points (medoid). It is known that this problem is NP-hard if the cardinalities of the clusters are given as a part of the input. In this paper we prove that the problem remains NP-hard in the case of arbitrary clusters sizes and suggest a 2-approximation polynomial-time algorithm for this problem.","PeriodicalId":52438,"journal":{"name":"Yugoslav Journal of Operations Research","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"1-mean and 1-medoid 2-clustering problem with arbitrary cluster sizes: Complexity and approximation\",\"authors\":\"A. Pyatkin\",\"doi\":\"10.2298/yjor211018008p\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the following 2-clustering problem. Given N points in Euclidean space, partition it into two subsets (clusters) so that the sum of squared distances between the elements of the clusters and their centers would be minimum. The center of the first cluster coincides with its centroid (mean) while the center of the second cluster should be chosen from the set of the initial points (medoid). It is known that this problem is NP-hard if the cardinalities of the clusters are given as a part of the input. In this paper we prove that the problem remains NP-hard in the case of arbitrary clusters sizes and suggest a 2-approximation polynomial-time algorithm for this problem.\",\"PeriodicalId\":52438,\"journal\":{\"name\":\"Yugoslav Journal of Operations Research\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Yugoslav Journal of Operations Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/yjor211018008p\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yugoslav Journal of Operations Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/yjor211018008p","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑下面的2聚类问题。给定欧几里德空间中的N个点,将其划分为两个子集(聚类),使聚类元素与其中心之间的距离平方和最小。第一个聚类的中心与其质心(均值)重合,而第二个聚类的中心应从初始点(中间点)的集合中选择。众所周知,如果将集群的基数作为输入的一部分给出,则该问题是np困难的。在本文中,我们证明了在任意簇大小的情况下问题仍然是np困难的,并提出了一个2逼近多项式时间算法来解决这个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
1-mean and 1-medoid 2-clustering problem with arbitrary cluster sizes: Complexity and approximation
We consider the following 2-clustering problem. Given N points in Euclidean space, partition it into two subsets (clusters) so that the sum of squared distances between the elements of the clusters and their centers would be minimum. The center of the first cluster coincides with its centroid (mean) while the center of the second cluster should be chosen from the set of the initial points (medoid). It is known that this problem is NP-hard if the cardinalities of the clusters are given as a part of the input. In this paper we prove that the problem remains NP-hard in the case of arbitrary clusters sizes and suggest a 2-approximation polynomial-time algorithm for this problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Yugoslav Journal of Operations Research
Yugoslav Journal of Operations Research Decision Sciences-Management Science and Operations Research
CiteScore
2.50
自引率
0.00%
发文量
14
审稿时长
24 weeks
期刊最新文献
Metric on the space of systems behavior functions represented by fuzzy measures Team-bounded DEA efficiency scores: The case of UEFA Champions League Players Bounds on eigenvalues of real symmetric interval matrices for αBB method in global optimization A managerial approach in resource allocation models: an application in us and Canadian oil and gas companies Neutrosophic MAGDM based on critic-EDAS strategy using geometric aggregation operator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1