{"title":"基于深度卷积和循环神经网络的视频序列手势识别","authors":"Falah Obaid, Amin Babadi, Ahmad Yoosofan","doi":"10.2478/acss-2020-0007","DOIUrl":null,"url":null,"abstract":"Abstract Deep learning is a new branch of machine learning, which is widely used by researchers in a lot of artificial intelligence applications, including signal processing and computer vision. The present research investigates the use of deep learning to solve the hand gesture recognition (HGR) problem and proposes two models using deep learning architecture. The first model comprises a convolutional neural network (CNN) and a recurrent neural network with a long short-term memory (RNN-LSTM). The accuracy of model achieves up to 82 % when fed by colour channel, and 89 % when fed by depth channel. The second model comprises two parallel convolutional neural networks, which are merged by a merge layer, and a recurrent neural network with a long short-term memory fed by RGB-D. The accuracy of the latest model achieves up to 93 %.","PeriodicalId":41960,"journal":{"name":"Applied Computer Systems","volume":"89 1","pages":"57 - 61"},"PeriodicalIF":0.5000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Hand Gesture Recognition in Video Sequences Using Deep Convolutional and Recurrent Neural Networks\",\"authors\":\"Falah Obaid, Amin Babadi, Ahmad Yoosofan\",\"doi\":\"10.2478/acss-2020-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Deep learning is a new branch of machine learning, which is widely used by researchers in a lot of artificial intelligence applications, including signal processing and computer vision. The present research investigates the use of deep learning to solve the hand gesture recognition (HGR) problem and proposes two models using deep learning architecture. The first model comprises a convolutional neural network (CNN) and a recurrent neural network with a long short-term memory (RNN-LSTM). The accuracy of model achieves up to 82 % when fed by colour channel, and 89 % when fed by depth channel. The second model comprises two parallel convolutional neural networks, which are merged by a merge layer, and a recurrent neural network with a long short-term memory fed by RGB-D. The accuracy of the latest model achieves up to 93 %.\",\"PeriodicalId\":41960,\"journal\":{\"name\":\"Applied Computer Systems\",\"volume\":\"89 1\",\"pages\":\"57 - 61\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/acss-2020-0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/acss-2020-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Hand Gesture Recognition in Video Sequences Using Deep Convolutional and Recurrent Neural Networks
Abstract Deep learning is a new branch of machine learning, which is widely used by researchers in a lot of artificial intelligence applications, including signal processing and computer vision. The present research investigates the use of deep learning to solve the hand gesture recognition (HGR) problem and proposes two models using deep learning architecture. The first model comprises a convolutional neural network (CNN) and a recurrent neural network with a long short-term memory (RNN-LSTM). The accuracy of model achieves up to 82 % when fed by colour channel, and 89 % when fed by depth channel. The second model comprises two parallel convolutional neural networks, which are merged by a merge layer, and a recurrent neural network with a long short-term memory fed by RGB-D. The accuracy of the latest model achieves up to 93 %.