SARCP:通过社会意识推荐利用网络攻击预测

IF 0.6 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Decision Support System Technology Pub Date : 2022-01-01 DOI:10.4018/ijdsst.286691
Nana Yaw Asabere, Elikem Fiamavle, Joseph Agyiri, W. Torgby, Joseph Eyram Dzata, N. Doe
{"title":"SARCP:通过社会意识推荐利用网络攻击预测","authors":"Nana Yaw Asabere, Elikem Fiamavle, Joseph Agyiri, W. Torgby, Joseph Eyram Dzata, N. Doe","doi":"10.4018/ijdsst.286691","DOIUrl":null,"url":null,"abstract":"In the domain of cyber security, the defence mechanisms of networks has traditionally been placed in a reactionary role. Cyber security professionals are therefore disadvantaged in a cyber-attack situation due to the fact that it is vital that they maneuver such attacks before the network is totally compromised. In this paper, we utilize the Betweenness Centrality network measure (social property) to discover possible cyber-attack paths and then employ computation of similar personality of nodes/users to generate predictions about possible attacks within the network. Our method proposes a social recommender algorithm called socially-aware recommendation of cyber-attack paths (SARCP), as an attack predictor in the cyber security defence domain. In a social network, SARCP exploits and delivers all possible paths which can result in cyber-attacks. Using a real-world dataset and relevant evaluation metrics, experimental results in the paper show that our proposed method is favorable and effective.","PeriodicalId":42414,"journal":{"name":"International Journal of Decision Support System Technology","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SARCP: Exploiting Cyber-Attack Prediction Through Socially-Aware Recommendation\",\"authors\":\"Nana Yaw Asabere, Elikem Fiamavle, Joseph Agyiri, W. Torgby, Joseph Eyram Dzata, N. Doe\",\"doi\":\"10.4018/ijdsst.286691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the domain of cyber security, the defence mechanisms of networks has traditionally been placed in a reactionary role. Cyber security professionals are therefore disadvantaged in a cyber-attack situation due to the fact that it is vital that they maneuver such attacks before the network is totally compromised. In this paper, we utilize the Betweenness Centrality network measure (social property) to discover possible cyber-attack paths and then employ computation of similar personality of nodes/users to generate predictions about possible attacks within the network. Our method proposes a social recommender algorithm called socially-aware recommendation of cyber-attack paths (SARCP), as an attack predictor in the cyber security defence domain. In a social network, SARCP exploits and delivers all possible paths which can result in cyber-attacks. Using a real-world dataset and relevant evaluation metrics, experimental results in the paper show that our proposed method is favorable and effective.\",\"PeriodicalId\":42414,\"journal\":{\"name\":\"International Journal of Decision Support System Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Decision Support System Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijdsst.286691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Decision Support System Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdsst.286691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

在网络安全领域,网络防御机制历来被置于反动角色。因此,网络安全专业人员在网络攻击情况下处于不利地位,因为他们在网络完全受损之前操纵这种攻击是至关重要的。在本文中,我们利用中间性网络度量(社会属性)来发现可能的网络攻击路径,然后使用节点/用户相似人格的计算来生成网络内可能的攻击预测。我们的方法提出了一种社会推荐算法,称为网络攻击路径的社会感知推荐(SARCP),作为网络安全防御领域的攻击预测器。在社交网络中,SARCP利用并传递所有可能导致网络攻击的路径。利用真实数据集和相关的评价指标,实验结果表明我们提出的方法是有利和有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SARCP: Exploiting Cyber-Attack Prediction Through Socially-Aware Recommendation
In the domain of cyber security, the defence mechanisms of networks has traditionally been placed in a reactionary role. Cyber security professionals are therefore disadvantaged in a cyber-attack situation due to the fact that it is vital that they maneuver such attacks before the network is totally compromised. In this paper, we utilize the Betweenness Centrality network measure (social property) to discover possible cyber-attack paths and then employ computation of similar personality of nodes/users to generate predictions about possible attacks within the network. Our method proposes a social recommender algorithm called socially-aware recommendation of cyber-attack paths (SARCP), as an attack predictor in the cyber security defence domain. In a social network, SARCP exploits and delivers all possible paths which can result in cyber-attacks. Using a real-world dataset and relevant evaluation metrics, experimental results in the paper show that our proposed method is favorable and effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Decision Support System Technology
International Journal of Decision Support System Technology COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
2.20
自引率
18.20%
发文量
40
期刊最新文献
A Novel Query Method for Spatial Database Based on Improved K-Nearest Neighbor Algorithm Analysis and Evaluation of Roadblocks Hindering Lean-Green and Industry 4.0 Practices in Indian Manufacturing Industries Developing Fuzzy-AHP-Integrated Hybrid MCDM System of COPRAS-ARAS for Solving an Industrial Robot Selection Problem Generalized Parametric Intuitionistic Fuzzy Measures Based on Trigonometric Functions for Improved Decision-Making Problem An Efficient Method to Decide the Malicious Traffic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1