使用移动麦克风的声场压缩采样

Fabrice Katzberg, Radoslaw Mazur, M. Maass, P. Koch, A. Mertins
{"title":"使用移动麦克风的声场压缩采样","authors":"Fabrice Katzberg, Radoslaw Mazur, M. Maass, P. Koch, A. Mertins","doi":"10.1109/ICASSP.2018.8461519","DOIUrl":null,"url":null,"abstract":"For conventional sampling of sound-fields, the measurement in space by use of stationary microphones is impractical for high audio frequencies. Satisfying the Nyquist-Shannon sampling theorem requires a huge number of sampling points and entails other difficulties, such as the need for exact calibration and spatial positioning of a large number of microphones. Dynamic sound-field measurements involving tracked microphones may weaken this spatial sampling problem. However, for aliasing-free reconstruction, there is still the need of sampling a huge number of unknown sound-field variables. Thus in real-world applications, the trajectories may be expected to lead to underdetermined sampling problems. In this paper, we present a compressed sensing framework that allows for stable and robust sub-Nyquist sampling of sound fields by use of moving microphones.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"85 1","pages":"181-185"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Compressive Sampling of Sound Fields Using Moving Microphones\",\"authors\":\"Fabrice Katzberg, Radoslaw Mazur, M. Maass, P. Koch, A. Mertins\",\"doi\":\"10.1109/ICASSP.2018.8461519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For conventional sampling of sound-fields, the measurement in space by use of stationary microphones is impractical for high audio frequencies. Satisfying the Nyquist-Shannon sampling theorem requires a huge number of sampling points and entails other difficulties, such as the need for exact calibration and spatial positioning of a large number of microphones. Dynamic sound-field measurements involving tracked microphones may weaken this spatial sampling problem. However, for aliasing-free reconstruction, there is still the need of sampling a huge number of unknown sound-field variables. Thus in real-world applications, the trajectories may be expected to lead to underdetermined sampling problems. In this paper, we present a compressed sensing framework that allows for stable and robust sub-Nyquist sampling of sound fields by use of moving microphones.\",\"PeriodicalId\":6638,\"journal\":{\"name\":\"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"85 1\",\"pages\":\"181-185\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2018.8461519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2018.8461519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对于传统的声场采样,使用固定麦克风在空间中测量高音频是不切实际的。满足Nyquist-Shannon采样定理需要大量的采样点,同时还需要对大量麦克风进行精确校准和空间定位等困难。涉及跟踪麦克风的动态声场测量可能会削弱这种空间采样问题。然而,为了实现无混叠重建,仍然需要对大量未知声场变量进行采样。因此,在实际应用中,轨迹可能会导致欠定采样问题。在本文中,我们提出了一个压缩传感框架,该框架允许使用移动麦克风对声场进行稳定和鲁棒的亚奈奎斯特采样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Compressive Sampling of Sound Fields Using Moving Microphones
For conventional sampling of sound-fields, the measurement in space by use of stationary microphones is impractical for high audio frequencies. Satisfying the Nyquist-Shannon sampling theorem requires a huge number of sampling points and entails other difficulties, such as the need for exact calibration and spatial positioning of a large number of microphones. Dynamic sound-field measurements involving tracked microphones may weaken this spatial sampling problem. However, for aliasing-free reconstruction, there is still the need of sampling a huge number of unknown sound-field variables. Thus in real-world applications, the trajectories may be expected to lead to underdetermined sampling problems. In this paper, we present a compressed sensing framework that allows for stable and robust sub-Nyquist sampling of sound fields by use of moving microphones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reduced Dimension Minimum BER PSK Precoding for Constrained Transmit Signals in Massive MIMO Low Complexity Joint RDO of Prediction Units Couples for HEVC Intra Coding Non-Native Children Speech Recognition Through Transfer Learning Synthesis of Images by Two-Stage Generative Adversarial Networks Statistical T+2d Subband Modelling for Crowd Counting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1