{"title":"疏水和两性蛋白与脂质双层膜相互作用的分子动力学模拟","authors":"J.-H. Lin, A. Baumgaertner","doi":"10.1016/S1089-3156(99)00062-8","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Molecular dynamics simulations of polypeptides<span> at high dilution near a fully hydrated bilayer membrane have been performed. In contrast to previous theoretical predictions, </span></span>Monte Carlo simulations and conclusions from experiments a spontaneous insertion of amphiphatic or hydrophobic proteins into a membrane is not observed. Rather it is found that an amphiphatic chain has the tendency to remain in proximity to the membrane surface, whereas the location of a hydrophobic chain is more unbound. This is shown using two proteins, </span>melittin and polyleucine. The conformation of the proteins and their orientation with respect to the membrane surface are discussed.</p></div>","PeriodicalId":100309,"journal":{"name":"Computational and Theoretical Polymer Science","volume":"10 1","pages":"Pages 97-102"},"PeriodicalIF":0.0000,"publicationDate":"2000-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1089-3156(99)00062-8","citationCount":"12","resultStr":"{\"title\":\"Molecular dynamics simulations of hydrophobic and amphiphatic proteins interacting with a lipid bilayer membrane\",\"authors\":\"J.-H. Lin, A. Baumgaertner\",\"doi\":\"10.1016/S1089-3156(99)00062-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Molecular dynamics simulations of polypeptides<span> at high dilution near a fully hydrated bilayer membrane have been performed. In contrast to previous theoretical predictions, </span></span>Monte Carlo simulations and conclusions from experiments a spontaneous insertion of amphiphatic or hydrophobic proteins into a membrane is not observed. Rather it is found that an amphiphatic chain has the tendency to remain in proximity to the membrane surface, whereas the location of a hydrophobic chain is more unbound. This is shown using two proteins, </span>melittin and polyleucine. The conformation of the proteins and their orientation with respect to the membrane surface are discussed.</p></div>\",\"PeriodicalId\":100309,\"journal\":{\"name\":\"Computational and Theoretical Polymer Science\",\"volume\":\"10 1\",\"pages\":\"Pages 97-102\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1089-3156(99)00062-8\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Theoretical Polymer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1089315699000628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Theoretical Polymer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1089315699000628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Molecular dynamics simulations of hydrophobic and amphiphatic proteins interacting with a lipid bilayer membrane
Molecular dynamics simulations of polypeptides at high dilution near a fully hydrated bilayer membrane have been performed. In contrast to previous theoretical predictions, Monte Carlo simulations and conclusions from experiments a spontaneous insertion of amphiphatic or hydrophobic proteins into a membrane is not observed. Rather it is found that an amphiphatic chain has the tendency to remain in proximity to the membrane surface, whereas the location of a hydrophobic chain is more unbound. This is shown using two proteins, melittin and polyleucine. The conformation of the proteins and their orientation with respect to the membrane surface are discussed.