J. Goodman, M. King, E. J. Dolier, R. Wilson, R. Gray, P. McKenna
{"title":"利用机器学习优化和控制超强激光-固体相互作用中的同步辐射","authors":"J. Goodman, M. King, E. J. Dolier, R. Wilson, R. Gray, P. McKenna","doi":"10.1017/hpl.2023.11","DOIUrl":null,"url":null,"abstract":"Abstract The optimum parameters for the generation of synchrotron radiation in ultraintense laser pulse interactions with planar foils are investigated with the application of Bayesian optimization, via Gaussian process regression, to 2D particle-in-cell simulations. Individual properties of the synchrotron emission, such as the yield, are maximized, and simultaneous mitigation of bremsstrahlung emission is achieved with multi-variate objective functions. The angle-of-incidence of the laser pulse onto the target is shown to strongly influence the synchrotron yield and angular profile, with oblique incidence producing the optimal results. This is further explored in 3D simulations, in which additional control of the spatial profile of synchrotron emission is demonstrated by varying the polarization of the laser light. The results demonstrate the utility of applying a machine learning-based optimization approach and provide new insights into the physics of radiation generation in laser–foil interactions, which will inform the design of experiments in the quantum electrodynamics (QED)-plasma regime.","PeriodicalId":54285,"journal":{"name":"High Power Laser Science and Engineering","volume":"90 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimization and control of synchrotron emission in ultraintense laser–solid interactions using machine learning\",\"authors\":\"J. Goodman, M. King, E. J. Dolier, R. Wilson, R. Gray, P. McKenna\",\"doi\":\"10.1017/hpl.2023.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The optimum parameters for the generation of synchrotron radiation in ultraintense laser pulse interactions with planar foils are investigated with the application of Bayesian optimization, via Gaussian process regression, to 2D particle-in-cell simulations. Individual properties of the synchrotron emission, such as the yield, are maximized, and simultaneous mitigation of bremsstrahlung emission is achieved with multi-variate objective functions. The angle-of-incidence of the laser pulse onto the target is shown to strongly influence the synchrotron yield and angular profile, with oblique incidence producing the optimal results. This is further explored in 3D simulations, in which additional control of the spatial profile of synchrotron emission is demonstrated by varying the polarization of the laser light. The results demonstrate the utility of applying a machine learning-based optimization approach and provide new insights into the physics of radiation generation in laser–foil interactions, which will inform the design of experiments in the quantum electrodynamics (QED)-plasma regime.\",\"PeriodicalId\":54285,\"journal\":{\"name\":\"High Power Laser Science and Engineering\",\"volume\":\"90 1\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2023-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Power Laser Science and Engineering\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1017/hpl.2023.11\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Power Laser Science and Engineering","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/hpl.2023.11","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Optimization and control of synchrotron emission in ultraintense laser–solid interactions using machine learning
Abstract The optimum parameters for the generation of synchrotron radiation in ultraintense laser pulse interactions with planar foils are investigated with the application of Bayesian optimization, via Gaussian process regression, to 2D particle-in-cell simulations. Individual properties of the synchrotron emission, such as the yield, are maximized, and simultaneous mitigation of bremsstrahlung emission is achieved with multi-variate objective functions. The angle-of-incidence of the laser pulse onto the target is shown to strongly influence the synchrotron yield and angular profile, with oblique incidence producing the optimal results. This is further explored in 3D simulations, in which additional control of the spatial profile of synchrotron emission is demonstrated by varying the polarization of the laser light. The results demonstrate the utility of applying a machine learning-based optimization approach and provide new insights into the physics of radiation generation in laser–foil interactions, which will inform the design of experiments in the quantum electrodynamics (QED)-plasma regime.
期刊介绍:
High Power Laser Science and Engineering (HPLaser) is an international, peer-reviewed open access journal which focuses on all aspects of high power laser science and engineering.
HPLaser publishes research that seeks to uncover the underlying science and engineering in the fields of high energy density physics, high power lasers, advanced laser technology and applications and laser components. Topics covered include laser-plasma interaction, ultra-intense ultra-short pulse laser interaction with matter, attosecond physics, laser design, modelling and optimization, laser amplifiers, nonlinear optics, laser engineering, optical materials, optical devices, fiber lasers, diode-pumped solid state lasers and excimer lasers.