无线入侵检测系统中对抗虚警的机器学习方法

D. Vijayakumar, S. Ganapathy
{"title":"无线入侵检测系统中对抗虚警的机器学习方法","authors":"D. Vijayakumar, S. Ganapathy","doi":"10.5539/cis.v11n3p67","DOIUrl":null,"url":null,"abstract":"Wireless Networks facilitate the ease of communication for sharing the crucial information. Recently, most of the small and large-scale companies, educational institutions, government organizations, medical sectors, military and banking sectors are using the wireless networks. Security threats, a common term found both in wired as well as in wireless networks. However, it holds lot of importance in wireless networks because of its susceptible nature to threats. Security concerns in WLAN are studied and many organizations concluded that Wireless Intrusion Detection Systems (WIDS) is an essential element in network security infrastructure to monitor wireless activity for signs of attacks. However, it is an indisputable fact that the art of detecting attacks remains in its infancy. WIDS generally collect the activities within the protected network and analyze them to detect intrusions and generates an intrusion alarm. Irrespective of the different types of Intrusion Detection Systems, the major problems arising with WIDS is its inability to handle large volumes of alarms and more prone to false alarm attacks. Reducing the false alarms can improve the overall efficiency of the WIDS. Many techniques have been proposed in the literature to reduce the false alarm rates. However, most of the existing techniques are failed to provide desirable result and the high complexity to achieve high detection rate with less false alarm rates. This is the right time to propose a new technique for providing high detection accuracy with less false alarm rate. This paper made an extensive survey about the role of machine learning techniques to reduce the false alarm rate in WLAN IEEE 802.11. This survey proved that the substantial improvement has been achieved by reducing false alarm rate through machine learning algorithms. In addition to that, advancements specific to machine learning approaches is studied meticulously and a filtration technique is proposed.","PeriodicalId":14676,"journal":{"name":"J. Chem. Inf. Comput. Sci.","volume":"77 1","pages":"67-81"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Machine Learning Approach to Combat False Alarms in Wireless Intrusion Detection System\",\"authors\":\"D. Vijayakumar, S. Ganapathy\",\"doi\":\"10.5539/cis.v11n3p67\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless Networks facilitate the ease of communication for sharing the crucial information. Recently, most of the small and large-scale companies, educational institutions, government organizations, medical sectors, military and banking sectors are using the wireless networks. Security threats, a common term found both in wired as well as in wireless networks. However, it holds lot of importance in wireless networks because of its susceptible nature to threats. Security concerns in WLAN are studied and many organizations concluded that Wireless Intrusion Detection Systems (WIDS) is an essential element in network security infrastructure to monitor wireless activity for signs of attacks. However, it is an indisputable fact that the art of detecting attacks remains in its infancy. WIDS generally collect the activities within the protected network and analyze them to detect intrusions and generates an intrusion alarm. Irrespective of the different types of Intrusion Detection Systems, the major problems arising with WIDS is its inability to handle large volumes of alarms and more prone to false alarm attacks. Reducing the false alarms can improve the overall efficiency of the WIDS. Many techniques have been proposed in the literature to reduce the false alarm rates. However, most of the existing techniques are failed to provide desirable result and the high complexity to achieve high detection rate with less false alarm rates. This is the right time to propose a new technique for providing high detection accuracy with less false alarm rate. This paper made an extensive survey about the role of machine learning techniques to reduce the false alarm rate in WLAN IEEE 802.11. This survey proved that the substantial improvement has been achieved by reducing false alarm rate through machine learning algorithms. In addition to that, advancements specific to machine learning approaches is studied meticulously and a filtration technique is proposed.\",\"PeriodicalId\":14676,\"journal\":{\"name\":\"J. Chem. Inf. Comput. Sci.\",\"volume\":\"77 1\",\"pages\":\"67-81\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Chem. Inf. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5539/cis.v11n3p67\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Chem. Inf. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/cis.v11n3p67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

无线网络为重要信息的共享提供了便利。最近,大部分中小企业、教育机关、政府机关、医疗部门、军队、银行等都在使用无线网络。安全威胁是有线和无线网络中常见的术语。然而,由于其易受威胁的特性,它在无线网络中占有重要地位。对WLAN的安全问题进行了研究,许多组织得出结论,无线入侵检测系统(WIDS)是网络安全基础设施中监视无线活动以发现攻击迹象的基本要素。然而,检测攻击的技术仍处于初级阶段,这是一个不争的事实。WIDS通常收集被保护网络内的活动,并对其进行分析,以检测入侵并产生入侵告警。不管不同类型的入侵检测系统,WIDS的主要问题是它无法处理大量的警报,而且更容易受到假警报攻击。减少虚警可以提高WIDS的整体效率。文献中提出了许多降低误报率的方法。然而,现有的大多数检测技术都无法提供理想的检测结果,并且在实现高检测率和低虚警率方面存在较高的复杂性。在这种情况下,提出一种既能提高检测精度又能降低误报率的新技术正是时候。本文对机器学习技术在WLAN IEEE 802.11中降低虚警率的作用进行了广泛的研究。这项调查证明,通过机器学习算法降低误报率已经取得了实质性的改善。除此之外,对机器学习方法的具体进展进行了细致的研究,并提出了一种过滤技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning Approach to Combat False Alarms in Wireless Intrusion Detection System
Wireless Networks facilitate the ease of communication for sharing the crucial information. Recently, most of the small and large-scale companies, educational institutions, government organizations, medical sectors, military and banking sectors are using the wireless networks. Security threats, a common term found both in wired as well as in wireless networks. However, it holds lot of importance in wireless networks because of its susceptible nature to threats. Security concerns in WLAN are studied and many organizations concluded that Wireless Intrusion Detection Systems (WIDS) is an essential element in network security infrastructure to monitor wireless activity for signs of attacks. However, it is an indisputable fact that the art of detecting attacks remains in its infancy. WIDS generally collect the activities within the protected network and analyze them to detect intrusions and generates an intrusion alarm. Irrespective of the different types of Intrusion Detection Systems, the major problems arising with WIDS is its inability to handle large volumes of alarms and more prone to false alarm attacks. Reducing the false alarms can improve the overall efficiency of the WIDS. Many techniques have been proposed in the literature to reduce the false alarm rates. However, most of the existing techniques are failed to provide desirable result and the high complexity to achieve high detection rate with less false alarm rates. This is the right time to propose a new technique for providing high detection accuracy with less false alarm rate. This paper made an extensive survey about the role of machine learning techniques to reduce the false alarm rate in WLAN IEEE 802.11. This survey proved that the substantial improvement has been achieved by reducing false alarm rate through machine learning algorithms. In addition to that, advancements specific to machine learning approaches is studied meticulously and a filtration technique is proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cover Image, Volume 41, Issue 13 Cover Image, Volume 41, Issue 15 Cover Image, Volume 41, Issue 14 Cover Image, Volume 41, Issue 11 Cover Image, Volume 41, Issue 9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1