{"title":"一种新的纹理描述符:圆形零件局部二值模式","authors":"Ibtissam Al Saidi, M. Rziza, J. Debayle","doi":"10.5566/IAS.2580","DOIUrl":null,"url":null,"abstract":"Local Binary Pattern (LBP) are considered as a classical descriptor for texture analysis, it has mostly been used in pattern recognition and computer vision applications. However, the LBP gets information from a restricted number of local neighbors which is not enough to describe texture information, and the other descriptors that get a large number of local neighbors suffer from a large dimensionality and consume much time. In this regard, we propose a novel descriptor for texture classification known as Circular Parts Local Binary Pattern (CPLBP) which is designed to enhance LBP by extending the area of neighborhood from one to a region of neighbors using polar coordinates that permit to capture more discriminating relationships that exists amongst the pixels in the local neighborhood which increase efficiency in extracting features. Firstly, the circle is divided into regions with a specific radius and angle. After that, we calculate the average gray-level value of each part. Finally, the value of the center pixel is compared with these average values. The relevance of the proposed idea is validate in databases Outex 10 and 12. A complete evaluation on benchmark data sets reveals CPLBP's high performance. CPLBP generates the score of 99.95 with SVM classification.","PeriodicalId":49062,"journal":{"name":"Image Analysis & Stereology","volume":"20 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Novel Texture Descriptor: Circular Parts Local Binary Pattern\",\"authors\":\"Ibtissam Al Saidi, M. Rziza, J. Debayle\",\"doi\":\"10.5566/IAS.2580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Local Binary Pattern (LBP) are considered as a classical descriptor for texture analysis, it has mostly been used in pattern recognition and computer vision applications. However, the LBP gets information from a restricted number of local neighbors which is not enough to describe texture information, and the other descriptors that get a large number of local neighbors suffer from a large dimensionality and consume much time. In this regard, we propose a novel descriptor for texture classification known as Circular Parts Local Binary Pattern (CPLBP) which is designed to enhance LBP by extending the area of neighborhood from one to a region of neighbors using polar coordinates that permit to capture more discriminating relationships that exists amongst the pixels in the local neighborhood which increase efficiency in extracting features. Firstly, the circle is divided into regions with a specific radius and angle. After that, we calculate the average gray-level value of each part. Finally, the value of the center pixel is compared with these average values. The relevance of the proposed idea is validate in databases Outex 10 and 12. A complete evaluation on benchmark data sets reveals CPLBP's high performance. CPLBP generates the score of 99.95 with SVM classification.\",\"PeriodicalId\":49062,\"journal\":{\"name\":\"Image Analysis & Stereology\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Image Analysis & Stereology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.5566/IAS.2580\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image Analysis & Stereology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5566/IAS.2580","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
A Novel Texture Descriptor: Circular Parts Local Binary Pattern
Local Binary Pattern (LBP) are considered as a classical descriptor for texture analysis, it has mostly been used in pattern recognition and computer vision applications. However, the LBP gets information from a restricted number of local neighbors which is not enough to describe texture information, and the other descriptors that get a large number of local neighbors suffer from a large dimensionality and consume much time. In this regard, we propose a novel descriptor for texture classification known as Circular Parts Local Binary Pattern (CPLBP) which is designed to enhance LBP by extending the area of neighborhood from one to a region of neighbors using polar coordinates that permit to capture more discriminating relationships that exists amongst the pixels in the local neighborhood which increase efficiency in extracting features. Firstly, the circle is divided into regions with a specific radius and angle. After that, we calculate the average gray-level value of each part. Finally, the value of the center pixel is compared with these average values. The relevance of the proposed idea is validate in databases Outex 10 and 12. A complete evaluation on benchmark data sets reveals CPLBP's high performance. CPLBP generates the score of 99.95 with SVM classification.
期刊介绍:
Image Analysis and Stereology is the official journal of the International Society for Stereology & Image Analysis. It promotes the exchange of scientific, technical, organizational and other information on the quantitative analysis of data having a geometrical structure, including stereology, differential geometry, image analysis, image processing, mathematical morphology, stochastic geometry, statistics, pattern recognition, and related topics. The fields of application are not restricted and range from biomedicine, materials sciences and physics to geology and geography.